Continuous Model Theory

Lecture 4: Ultrapowers of II₁ factors

Bradd Hart

Sept. 22, 2017

McDuff's question

- In her 1970 PLMS paper, McDuff proved that if M is a separable II₁ factor such that the central sequence algebra for M is non-commutative i.e. $M' \cap M^{\mathcal{U}}$ is not abelian for some (any) non-principal ultrafilter on \mathbb{N} , then $M \cong M \otimes \mathcal{R}$.
- She made systematic use of ultraproducts and the central sequence algebra in her work but noticed that it didn't seem to matter which non-principal ultrafilter she used.
- She asked if \mathcal{U} and \mathcal{V} were non-principal ultrafilters on \mathbb{N} , are $M' \cap M^{\mathcal{U}}$ and $M' \cap M^{\mathcal{V}}$ isomorphic?
- In fact, one could ask if $M^{\mathcal{U}}$ was isomorphic to $M^{\mathcal{V}}$.
- It turns out that both of these questions are model theory questions. Why?

Types

Fix a theory T in a language \mathcal{L} . We consider (partial) functions p on the space of formulas $\mathcal{F}_{\overline{x}}$ for a tuple \overline{x} of sorted variables to \mathbb{R} .

Definition

- *p* is a (partial) type if there is a model *M* of *T* and *ā* ∈ *M* of the appropriate sort such that *p*(φ) = φ^{*M*}(*ā*) for all φ ∈ dom(*p*). We say that *ā* realizes *p*.
- 2. *p* is called a complete type if the domain of *p* is $\mathcal{F}_{\overline{x}}$.

Fact

- *p* is a type iff it is finitely satisfied i.e. if the restriction to every finite subset of its domain is a type.
- A complete type is a linear functional on $\mathcal{F}_{\overline{x}}$.

A topology on the type space

We fix a language \mathcal{L} and a complete theory \mathcal{T} in this language. For a tuple of sorts \overline{S} from \mathcal{L} , we define the set $S_{\overline{X}}(\mathcal{T})$ to be all complete types defined on $\mathcal{F}_{\overline{X}}$.

The logic topology on $S_{\overline{x}}(T)$ is the restriction of the weak-* topology on the dual space of $\mathcal{F}_{\overline{x}}$. Equivalently, the collection of sets

 $\{ p \in S_{\overline{x}}(T) : p(\varphi) < r \}$ for every formula φ and real number r,

form the collection of basic open sets.

Fact

- The logic topology on $S_{\overline{x}}(T)$ is compact and Hausdorff.
- If φ is a formula then the function f_φ from S_x(T) to ℝ given by p → p(φ) is continuous.

A metric on the type space

Fix a complete theory T.

- Define a metric on S_{x̄}(T) as follows: for p, q ∈ S_{x̄}(T), d(p,q) is the infinum of d^M(ā, b) where M ranges over all models of T, ā ∈ M is a realization of p and b ∈ M is a realization of q. d is computed as the maximum of the values d_S as S ranges over the sorts in S̄.
- Claim: *d* defines a metric on $S_{\overline{X}}(T)$.
- Notice that d(p,q) is always realized this follows by compactness as does the triangle inequality.

Proposition

The metric topology on $S_{\overline{x}}(T)$ refines the logic topology.

Saturation

Definition

We say a metric structure \mathcal{M} is λ -saturated if whenever $A \subseteq M$ is of density character $< \lambda$ and p is a type over A then p is realized in \mathcal{M} . We say \mathcal{M} is saturated if it is λ -saturated for λ the density character of \mathcal{M} .

Proposition

If \mathcal{M} and \mathcal{N} are saturated of the same theory and density character then $\mathcal{M}\cong\mathcal{N}$.

Proposition

If \mathcal{M} is separable and \mathcal{U} is a non-principal ultrafilter on \mathbb{N} then $\mathcal{M}^{\mathcal{U}}$ is \aleph_1 -saturated i.e. any type over a separable subset of $\mathcal{M}^{\mathcal{U}}$ is realized in $\mathcal{M}^{\mathcal{U}}$.

Corollary

If CH holds, \mathcal{M} is separable and \mathcal{U} and \mathcal{V} are two non-principal ultrafilters on \mathbb{N} then $\mathcal{M}^{\mathcal{U}} \cong \mathcal{M}^{\mathcal{V}}$.

Set theoretic considerations

- One consequence of ℵ₁-saturation is that if N ≡ M and N is separable then N embeds into M^U for any non-principal ultrafilter U - M^U is separably universal.
- Notice then that if we assume CH, McDuff's question has a positive answer. We can fix the separable model M and build an isomorphism of $M^{\mathcal{U}}$ and $M^{\mathcal{V}}$ which fixes M and hence the relative commutants would all be isomorphic as well.
- Assuming CH though doesn't actually get at the heart of this question.
- For this talk we will say that a property holds "necessarily" if it holds in all models of ZFC regardless of the value of the continuum.

Stability

Definition

A theory *T* is λ -stable if for any model \mathcal{M} of *T* of density character λ , the type space over \mathcal{M} with the metric topology has density character λ . A theory is stable if it is λ -stable for some λ .

Example

Infinite-dimensional Hilbert spaces: Every type over a Hilbert space with orthonormal basis *I* is determined by functions from *I* to \mathbb{C} . Dense among these are the types that are 0 at all but finitely many elements of *I*. So the theory of infinite-dimensional Hilbert spaces is λ -stable for all λ .

The order property

Definition

A theory *T* has the order property if there is a model \mathcal{M} of *T*, a formula $\varphi(\bar{x}, \bar{y})$ and tuples from $\mathcal{M} \bar{a}_1, \bar{a}_2, \ldots$ such that

 $\varphi(\bar{a}_i, \bar{a}_j) = 0$ if $i \leq j$ and 1 if i > j.

Example

The Banach space c_0 of ω -sequences of real numbers which tend to 0. Let the formula $\varphi(x, y; u, v)$ be 2 - ||x + v||. If e_k is the sequence with 1 in the kth spot and 0 elsewhere and a_k is the sequence with 1 up to the kth spot and 0 afterwards then

 $\varphi(a_m, e_m; a_n, e_n) = 1$ if m < n and 0 otherwise.

Ultrapower characterization of stability

Theorem

For a separable complete theory T, the following are equivalent:

- 1. T is stable.
- 2. If \mathcal{M} is a separable model of T then for any non-principal ultrafilter \mathcal{U} on \mathbb{N} , $\mathcal{M}^{\mathcal{U}}$ is necessarily saturated.
- If *M* is a separable model of *T* then the isomorphism type of *M^U* is necessarily unique for any non-principal ultrafilter *U* on *N*.
- 4. T does not have the order property.

Sketch of a proof of the characterization

- The easiest of the implications is 2 implies 3: $\mathcal{M}^{\mathcal{U}}$ has density character continuum and so if all such are saturated then the isomorphism type is unique.
- 3 implies 4 is beyond the scope of this lecture but roughly, if one assumes that *T* has the order property and that CH fails then one is allowed to code cardinalities other than the continuum into an ultrapower of a separable model.
- 4 implies 1 is approximately the same as in the classical case (no pun intended). In the continuous case, if *T* is not stable then there will be a formula φ and some ε such that over some separable model *M*, there is a φ-type which ε-splits over every finite subset of *M*. One builds an order out of this.

Sketch of a proof of the characterization, cont'd

1 implies 2: stablity is used to develop a notion of independence known as forking which is axiomatically well-behaved. To see that M^U is saturated when T is stable, one chooses a type p over an elementary submodel N ≺ M^U of size less than the continuum. From stability, p does not fork over some separable N₀ ≺ N. In M^U it is possible to find continuum many independent realizations of p|N₀ and since N has size less than the continuum, not all of these realizations can be dependent on N. So one of them must realize p itself.

Proof that II₁ factors are unstable

• Consider the formula $\varphi(x, y; u, v) := \|[x, v]\|_2$.

$$a = \left(egin{array}{cc} 0 & 1 \ 0 & 0 \end{array}
ight) ext{ and } b = \left(egin{array}{cc} 0 & 0 \ 1 & 0 \end{array}
ight).$$

Note

Let

$$[a,b] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 and $||[a,b]||_2 = 1$.

• Thinking of \mathcal{R} as $M_2(\mathbb{C})\otimes M_2(\mathbb{C})\otimes M_2(\mathbb{C})\dots$ let

$$c_k = a \otimes a \otimes a \dots 1 \otimes 1 \otimes \dots$$
 (*k* times)

and

 $d_k = 1 \otimes 1 \dots b \otimes 1 \otimes 1 \dots$ in the kth spot.

Proof that II₁ factors are unstable, cont'd

• So in R, we have

 $\varphi(c_m, d_m; c_n, d_n) = 0$ if m < n and 1 if $m \ge n$.

Since φ is quantifier-free and R can be embedded into any II₁ factor, all II₁ factors have the order property and hence are unstable.

The case of the relative commutant

- Fix a separable II₁ factor *M*. It is important to note that the theory of the relative commutant does not depend on the ultrafilter. After that, there are three cases.
- The first possibility is that M' ∩ M^U is C. In this case then it is C no matter what the ultrafilter. This is the "not property Γ" case.
- The second possibility is that $M' \cap M^{\mathcal{U}}$ is abelian. More about this in a minute.
- The third possibility is that M' ∩ M^U is not abelian. One argues that it contains a copy of M₂(ℂ) and then uses model theory to show that it actually contains a copy of R.
- Now since the formula φ which witnesses the order property is quantifier-free, one repeats the argument that we have non-isomorphic ultrapowers relativized to the relative commutant.

The case of the relative commutant: the abelian case

- Now back to the abelian case: $M' \cap M^{\mathcal{U}}$ is abelian.
- It is a tracial von Neumann algebra and since *M* is a II₁ factor, the relative commutant does not have a minimal projection.
- From the characterization of abelian von Neumann algebras, the relative commutant is isomorphic to $L^{\infty}(B)$ for the atomless probability algebra *B* of density character continuum given by its projections.
- By the work of Ben Ya'acov, Henson et al, the theory of atomless probability algebras is stable and has quantifier elimination.
- We can now repeat the argument that stable theories have unique ultrapowers relativized in this case to show that these probability algebras are all isomorphic independent of the ultrafilter.
- We conclude that the isomorphism type of $M' \cap M^{\mathcal{U}}$ is independent of \mathcal{U} .