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Linear operators

• Fix a Hilbert space H and consider a linear operator A on H. The
operator norm of A is defined by

‖A‖ := sup{‖Ax‖
‖x‖

: x ∈ H, x 6= 0}

if this is defined and if it is, we call A bounded.
• We write B(H) for the set of all bounded operators on H.
• B(H) carries a natural complex vector space structure; it also

has a multiplication given by composition. There is an adjoint
operation defined via the inner product on H: for A ∈ B(H), A∗

satisfies, for all x , y ∈ H,

〈Ax , y〉 = 〈x ,A∗y〉.

• The operator norm puts a normed linear structure on B(H) and
the norm satisfies the C∗-identity ‖A∗A‖ = ‖A‖2 for all A ∈ B(H).



C∗-algebras
Definition
• A concrete C∗-algebra is a norm closed *-subalgebra of B(H) for

some Hilbert space H.
• An abstract C∗-algebra is Banach *-algebra which satisfies the

C∗-identity.

Theorem (Gelfand-Naimark-Segal)
Every abstract C∗-algebra is isomorphic to a concrete C∗-algebra.

Example

• For any Hilbert space H, B(H) is a concrete C*-algebra. In
particular, Mn(C), n × n complex matrices, is a C∗-algebra for all
n.

• C(X ), all complex-valued continuous functions on a compact,
Hausdorff space X is an abelian (abstract) C∗-algebra. The norm
is the sup-norm. By a result of Gelfand and Naimark, these are
all the unital abelian C∗-algebras.



C∗-algebraic ultraproducts

Suppose Ai are C∗-algebras for all i ∈ I and that U is an ultrafilter on
I. Consider the bounded product∏bAi := {ā ∈

∏
Ai : lim

i→U
‖ai‖ <∞}

and the two-sided ideal cU

{ā ∈
∏bAi : lim

i→U
‖ai‖ = 0}.

The ultraproduct,
∏
U Ai is defined as

∏b Ai/cU .



C∗-algebras as metric structures

• C∗-algebras are treated as metric structures using bounded
balls; there are sorts for each ball of radius n ∈ N.

• There are inclusion maps between the balls. Additionally there
are functions for the restriction of all the operations to the balls.
This involves the addition, multiplication, scalar multiplication and
the adjoint.

• The metric is given via the operator norm as ‖x −y‖ on each ball.
• It is routine to check that all of these functions are uniformly

continuous (the only issue is multiplication and this holds
because we have restricted the norm).

• The sorts are complete since C∗-algebras are complete.
• (FHS) The class of C∗-algebras forms an elementary class in this

language.



A second topology

• The weak operator topology on B(H) is induced by the family of
semi-norms given by, for every ζ, η ∈ H,

A 7→ |〈Aζ, η〉|.

• M ⊆ B(H) is a von Neumann algebra if it is a unital *-algebra
closed in the weak operator topology.

• Equivalently, any unital *-algebra M ⊆ B(H) which satisfies
M ′′ = M is a von Neumann algebra where

M ′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ M}.

• A linear functional τ on a C∗-algebra M is a (finite, normalized)
trace if it is positive (τ(a∗a) ≥ 0 for all a ∈ M), τ(a∗a) = τ(aa∗)
for all a ∈ M and τ(1) = 1. We say it is faithful if τ(a∗a) = 0
implies a = 0.



Tracial von Neumann algebras
A tracial von Neumann algebra M is a von Neumann algebra with a
faithful trace τ . τ induces a norm on M

‖a‖2 =
√
τ(a∗a).

Example

• Mn(C) with the normalized trace; B(H) for infinite-dimensional H
is not.

• Inductive limits of tracial von Neumann algebras are tracial von
Neumann algebras. In particular, R, the inductive limit of the
Mn(C)’s is a tracial von Neumann algebra called the hyperfinite
II1 factor.

• L(Fn) - suppose H has an orthonormal generating set ζh for
h ∈ Fn. Let ug for g ∈ Fn be the operator determined by

ug(ζh) = ζgh.

L(Fn) is the von Neumann algebra generated by the ug ’s. It is
tracial: for a ∈ L(Fn), let τ(a) = 〈a(ζe), ζe〉.



Tracial vNas as metric structures

• As with C*-algebras, for a tracial von Neumann algebra, we
introduce sorts for the balls of operator norm n for each n ∈ N.

• The basic functions are again considered as partitioned across
the sorts.

• The metric on each ball is induced by the 2-norm.
• (FHS) The class of tracial von Neumann algebras forms an

elementary class
• Tracial ultraproducts of von Neumann algebras, introduced by

McDuff, are also equivalent to the ultraproduct in the metric
structure sense for tracial von Neumann algebras.

• A von Neumann algebra whose centre is C is called a factor. A
tracial factor is type II1 if it contains a projection with irrational
trace. (FHS) The class of II1 factors is elementary.

• R, RU ,
∏

U Mn(C) and L(Fn) are all II1 factors.



Property Γ

• Consider M any II1 factor and the partial type

p(x) = {[x ,m] = 0 : m ∈ M}.

• (MvN) M has property Γ if p is not algebraic in the theory of M.
Property Γ is elementary by its definition.

•
∏
U Mn(C) does not have property Γ; neither does L(Fn).

• Consider M ≺ MU and all realizations of p in MU - it is M ′ ∩MU ,
the relative commutant or the central sequence algebra. It is also
a von Neumann algebra.

• There are three cases (McDuff):
• M does not have property Γ,
• M has property Γ and the relative commutant is abelian (and does

not depend on U), or
• M has a non-abelian relative commutant (it is type II1).

• McDuff asked if in the third case, the isomorphism type depends
on U . FHS answered yes because the theory of II1 factors is
unstable!



The theory of R

• R is the atomic model of its theory; any embedding of it into any
other model of its theory is automatically elementary.

• Th(R) is not model complete; in particular, it does not have
quantifier elimination (FGHS; GHS).

• A question logicians must ask: is the theory of R decidable?
• What does this mean for a continuous theory? Is there an

algorithm such that given a sentence ϕ and ε > 0, we can
compute ϕR to within ε.

• By (BYP), the answer is yes if there is a recursive axiomatization
of Th(R).

• Do we know such an axiomatization? No!
• We do have a recursive axiomatization of all tracial von

Neumann algebras - this is a universal class so what do we know
about Th∀(R)? Is it decidable?



A little background

• If A is any separable II1 tracial von Neumann algebra then
R ↪→ A;

• If A ≡∀ R then A ↪→ RU .
• Equivalently, if A ↪→ RU then Th∀(A) = Th∀(R).
• So if all separable II1 tracial von Neumann algebras embed into
RU then Th∀(R) is decidable.

• Problem: the assumption is the Connes Embedding Problem!
• In fact, CEP is equivalent to the decidability of the universal

theories of all tracial von Neumann algebras. (GH)
• To me, this says that this problem is very hard or that Th(R) is

undecidable (or both).
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Theories of II1 factors

• (BCI; GH2; GHT) There are continuum many theories of II1
factors. In fact, McDuff’s original examples of continuum many
non-isomorphic II1 factors are not elementarily equivalent.

• The free group factor problem asks if L(Fm) and L(Fn) are not
isomorphic for m 6= n. A model theoretic version of this question:
are L(Fm) and L(Fn) elementarily equivalent?

• We do know that L(F∞) and
∏
U L(Fn) have the same ∀∃-theory

for non-principal U .
• Related questions: for non-principal U , is the theory of

∏
U Mn(C)

independent of U? How are the theory of ultraproducts of matrix
algebras related to the theories of free group factors?



Nuclear algebras
• A linear map ϕ : A→ B is positive if ϕ(a∗a) ≥ 0 for all a ∈ A

(positive elements go to positive elements).
• ϕ is completely positive if for all n, ϕ(n) : Mn(A)→ Mn(B) is

positive.
• ϕ is contractive if ‖ϕ‖ ≤ 1; *-homomorphisms are cpc maps.

Definition
A C*-algebra A is nuclear if for every ā ∈ A and ε > 0 there is an n
and cpc maps

ϕ : A→ Mn(C) and ψ : Mn(C)→ A

such that
‖ā− ψϕ(ā))‖ < ε.

• Examples: Abelian C*-algebras, Mn(C)

• Inductive limits of nuclear algebras; nuclear algebras are closed
under ⊗ and direct sum.



A helpful picture

A A A . . .

Mn1 (C) Mn2 (C) Mn3 (C) . . .

id id id

ψ3
ϕ1 ϕ2 ϕ3

ψ1 ψ2



Model theoretic characterization of nuclear algebras

• The general classification problem is to give a complete (usable)
set of invariants for all (unital), separable, simple nuclear
algebras.

• Consider, for k ,n ∈ N, the predicate defined on Ak
1 by

Rk
n (ā) = inf

ϕ,ψ
‖ā− ψ(ϕ(ā))‖

where ϕ : A→ Mn(C) and ψ : Mn(C)→ A range over cpc maps.
• (FHLRTVW) This predicate is a definable predicate in the

language of C*-algebras by the Beth definability theorem.
• It follows then that a C*-algebra is nuclear if it satisfies, for all k ,

inf
x̄

inf
n

Rk
n (x̄).



Strongly self-absorbing algebras

• D is an ssa algebra if D ∼= D ⊗ D and this isomorphism is
approximately unitarily equivalent to idD ⊗ 1.

• Conjecturally, all ssa algebras are known: Z, Mp∞(C), O∞ and
O2 together with their (possibly infinite) tensor products.

• The model theory of an ssa algebra is very nice: If D is ssa then
• it is the prime model of its theory, and
• any embedding of D into a model of the theory of D is automatically

elementary.
• (FHRT) D is ssa iff

• if whenever U is an non-principal ultrafilter on N and σ : D → DU is
elementary then σ is unitarily equivalent to the diagonal map, and

• D ≡ D ⊗ D.
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