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Overview

e Lecture 1: Ultraproducts and continuous logic
e Lecture 2: C*-algebras and Il factors
o Lecture 3: Definable sets

See www.math.mcmaster.ca/~bradd/NashvilleCMTOA.html for the
slides and links to other resources.



Filters and Ultrafilters
Definition
If X is asetand F C P(X) then F is said to be a filter if
e D& F,
e if A, Bec Fthen AnBe F, and
eifAc FandAC BC Xthen Be F.

Lemma
G C P(X) is contained in a filter iff G has the finite intersection
property i.e. for every finite Gy C G, () Go # 0.

Definition

An ultrafilter on X is a filter F such that for every A C X, either A€ F
orX\AeF.

Lemma

e If F is a filter on X then F is an ultrafilter iff it is a maximal filter.
o Any filter on X can be extended to an ultrafilter.



Ultralimits

Now suppose U is an ultrafilteronaset fandr = (r;: i € I} is an
I-indexed family of real numbers. We define the ultralimit of 7 with
respect to U as follows:

limr=riffforeverye>0,{icl:|r—r|<e} €lU.
i—U

Lemma
If T is bounded then

o lim r; exists and is unique.
i—U

e limnr=inf{B:{iel:r<B}elU}.
i—U

o limri=sup{B:{iel:r>B}cU}.
i—U



Ultraproducts of metric spaces

Fix an index set /, an ultrafilter &/ on / and uniformly bounded metric
spaces (X;, d;) for i € Ii.e. there is some B so that for all / and all
X,y € X;, di(x,y) < B. Define d on HX,- as follows:

iel

d(x,y) = I“jgl di(x;, yi)

Lemma
d is a pseudo-metric on [ | X;.
el

Definition

The ultraproduct of the X;’s with respect to U, [[,, X;, is the metric
space obtained by quotienting [],, X; by d. If all the X’s are equal to
a fixed X we will often write X¥ for this ultraproduct and call it the
ultrapower.



Exercises

Show that for any / and ultrafilter 2 on I, [0, 1] = [0, 1]. More
generally, show that for a compact metric space X, X* = X.
Show that if X; is an /-indexed family of uniformly bounded
complete metric spaces then [[,, X; is complete.

Show for any family of uniformly bounded metric spaces X, for
ne N, [, Xn is complete.

Show that this definition of ultraproduct is the same as the
discrete or set-theoretic ultraproduct when the metric on the
metric spaces is discrete {0, 1}-valued.



Metric structures

We want to add more structure to a (bounded) metric space; for
now let’s consider a single additional function f.

So we will have a bounded metric space (X,d) and a function f
say of one variable. We do want that the ultraproduct of these
structures is still a structure of the same kind. So how do we
define f on the ultrapower of X?

f must be continuous!
f must be uniformly continuous!

There is nothing special about one variable; these arguments
apply to functions of many variables.



Metric structures contd

What about relations? Imagine that we have a one-variable
relation R (taking values somewhere) on a metric space and we
want to make sense of it in the ultrapower.

Its range must be compact and R must be uniformly continuous.

There is really no loss in assume that the range of R is [0, 1] or
some other compact interval in the reals.

Again there is nothing special about one-variable; we can have
relations of many variables.



The language of a metric structure

A language £ will consist of
e a set S called sorts;

o F, a family of function symbols. For each f € F we specify the
domain and range of f: dom(f) = [[[_; S; where Si,...,S, €S
and rng(f) = S where S € S. Moreover, we also specify a
continuity modulus. That is, for each i < n we are given
6/ :[0,1] — [0,1]; and

e R, afamily of relation symbols. For each R € R we are given the
domain dom(R) = [[._, Si where Si,..., S, € S and the
rng(R) = Kg for some closed interval Kg. Moreover, for each i,
we specify a continuity modulus §F : [0, 1] — [0, 1].

e Foreach S € S, we have one special relation symbol ds with
domain S x S and range of the form [0, B;]. It's continuity moduli
are the identity functions.



Definition of a metric structure

A metric structure M interprets a language £; it will consist of

e an S-indexed family of complete bounded metric spaces
(SM, d3") with bound Bs for S € S;

o a family of functions f* for every f ¢ F such that
dom(fM) =[], S™ where dom(f) = [[_, S; and
rng(fM) = SM where rng(f) = S. ™ is uniformly continuous as
specified by the uniform continuity moduli associated to f; that is
forevery i <n, a; € SM,... a, € S} and a € SM, for every
e>0and é = §/(e) if d§'(a;, &) < 4 then

dd' (M (ay,...,a,...,an), P a,...,d,...,an)) <€
o a family of relations RM for every R € R such that
dom(ARM) =[], S where dom(R) =[]/, S; and
rng(R™) = Kg. RM is uniformly continuous as specified by the
uniform continuity moduli associated to R as above.



Examples of metric structures

Some simple examples:

e Any complete bounded metric space (X, d). This has the empty
family of functions and relations although we often count the
metric as a relation (why is it uniformly continuous?)

o Any ordinary first order structure M with some collection of
functions and relations. To see this as a metric structure, we put
the discrete {0, 1}-valued metric on M to make it a bounded
metric space. All functions become uniformly continuous.
Relations which are usually thought of as subsets of M" become
{0, 1}-valued functions - again they are uniformly continuous.



Banach space

A Banach space X is a complete normed linear space; how can
we see this as a metric structure?

Let B, be the ball of radius n centered at the origin in X; B, is a
bounded complete metric space with respect to the metric
induced by the norm.

There are inclusion maps between B, and B, if n < m.

0 is a constant (our functions can have arity 0!) in B;.

For scalars A and for every n, there is a unary function A\, which
is scalar multiplication by A on By; this function has range in B,
where mis the least integer greater than or equal to n|A|.

The operation of addition has to be similarly divided up: for
m, n € N, there is an operation +p, , which takes By, x By to
Bern.



Banach space, contd

e The metric on each ball is induced by the norm i.e.
dn(x,y) :=||x — y|| is the metric on B,.
e So formally a Banach space can be thought of as a metric
structure by considering
e The family of bounded metric spaces B, for all n € N with metrics
dn, as well as
o the family of functions 0, A, for scalars A and n € N, inclusion maps
between the sorts, and +m,» for all m,n € N.

e One checks easily that these functions and relations are
uniformly continuous. The relations have bounded range since
they are restricted to bounded balls.



Ultraproducts of metric structures

Fix a language £, an index set /, an ultrafilter ¢/ on | and L-structures
Miforiel

Definition

The ultraproduct of the M,’s with respect to U/, [[,, M; is the
L-structure M defined as follows:

1. for every sort S, SM = [],, SM with metric d! = lim ddh,
i—

2. for every function symbol f with range S
fM()‘() = (AMi(x;): i e I>/d§"‘, and
3. for every relation symbol R,

RM = lim RM.
i—-U

If all of the M,’s are a fixed A/, we call this the ultrapower and write

NY,



A calculation (exercise)

e Suppose that (X;, d;) are uniformly bounded metric spaces for all
i € I, U is an ultrafilter on / and f; is an n-ary uniformly continuous
relation with a fixed continuity modulus for all i € / and range in
K, a compact interval.

e Claim: Suppose that (X, d, f) is the ultraproduct H(X,-, a;, f;) and
u
a,...,an € Xthen

sup f(x, a, ...,an) = lim sup fi(x, &, ..., a}).
xeX I=U xeX;



Terms and formulas

For alanguage £, terms are defined inductively from function symbols
and variables by composition exactly as in discrete logic. The only
wrinkle is that one needs to keep track of the continuity modulus of
terms determined by composition. Formulas are defined inductively.

Definition
e Suppose R is a relation symbol in £ with dom(R) = 1‘[,’.’:1 S;and
rng(R) = Kg, and 7; are terms where rng(r;) = S; for all i. Then

R(r1,...,m,) is a formula. The domain, range and continuity
moduli are those obtained by composition.

e Suppose y;(X) is a formula with range K, for all i < nand
f:R" — R is a continuous function. Then f(¢1,...,¢n)isa
formula with range f([]/_4 K,,) and domain and continuity moduli
determined by composition.

e If pis aformula and x is a variable then sup, ¢ and inf, ¢ are
both formulas. The sort of x is removed from the domain; the
range and continuity moduli for the remaining variables stay the
same.



Interpretations

Fix a metric structure M for a language L.
o Terms are interpreted by composition inductively as usual.

e For the formula R(71(X), ..., 7a(X)) where R is a relation in £ and
T,...,Tn are terms, its interpretation is given, for every
appropriate a € M, by

RY(r"(@),.... 73" (a))

o If pj(X)is aformulaforalli < nand f: R” — R is a continuous
function then if ¢ is the formula f(¢1, ..., ¢n) then

M= 1t ).
e Suppose ¢(x,¥) is a formula and @ € M is a tuple appropriate
for the variables y and x is of sort S. Then

(sup, ¢(x,a))™ = sup{e™(b,a) : bc SM}

and
(infy o(x, @)™ = inf{eM(b,a) : be SM}.



Basic properties

Proposition
In an L-structure M
e the interpretations of terms in M are uniformly continuous
functions with continuity modulus specified by the definition of
the term, and
o all formulas when interpreted in M, define uniformly continuous
functions with domains, range and continuity modulus specified
by the definition of the formula.

A sentence is a formula with no free variables. It is a consequence of
the proposition that any sentence in £ takes on a value in a metric
structure in a compact interval specified by £ and this interval is
independent of the given structure.



Theories

e For alanguage L, Sent, is the set of sentences of L.

e The theory of an £-structure M is the function
Th(M) : Sent; — R defined by, for any sentence ¢,

Th(M)(p) = ™

Notice that Th(M) is a linear functional on the space of
sentences and is in fact determined by its kernel. We then
sometimes refer to {¢ € Sent, : o™ = 0} as the theory of M.

e An (L-)theory is a set of sentences T which is contained in
Th(M) for some M.



Example

We will write out and interpret some formulas and sentences about
Banach spaces.

o There are universal (sup) sentences expressing the fact that we
have a normed linear space. For instance, we have

SUPyep, SUPyep, OB, (X +1,1 Y, Y +1,1 X)

which evaluates to 0 and partially expresses that + is
commutative.

¢ We have the triangle inequality:

SUPycp, SUPycp, SUP,cp,(dB,(X;2) — (dB,(X,Y) + ds,(Y, 2)).

* We also have sup,.g (ds, (x,0) ~ 1).



Example, contd

Consider the sentence, for every n € N,

sup min{1 = d(x, i(O)),yien; d(x,i(y))}

xeB,

It is possible to determine if a metric space is compact using
sentences in continuous logic. Consider

¢(e, n) ==infy, . x, sup, max;{d(x;,y) = €/2}.

X is compact iff for every e there is n such that (e, n)X = 0.

It follows that one can deduce from the theory of a given Banach
space if it is compact.

In particular there is a set of sentences which expresses that a
Banach space is infinite-dimensional or equivalently not compact.



t0o$’ Theorem

Theorem
Suppose M are L-structures for all i € I, U is an ultrafilter on 1, ¢(X)
is an L-formula anda e M := H M, /U then

i€l

pM(@) = lim o™(3)).

i—U



Satisfiability

Definition

o We say a set of sentences ¥ in a language L is satisfied if there
is an L-structure M such that for every sentence in X holds in M
i.e. forevery p € &, o™ = 0.

o We say such a X is finitely satisfied if every finite subset of X is
satisfied.

e For a set of sentence X and ¢ > 0, the e-approximation of ¥ is

{lo] = e:peX}

e ¥ is approximately finitely satisfied if for every ¢ > 0, the
e-approximation of ¥ is finitely satisfiable.



Compactness

Theorem
TFAE for a set of sentences ¥ in a language L

e Y js satisfiable.
o X s finitely satisfiable.
o ¥ |s approximately finitely satisfiable.



Embeddings and elementary submodels

e Suppose that M and N are L-structures such that the universe
of M is a closed subset of A/. M is called a submodel if all
functions and relations from £ on M are the restriction of those
from . We write M C V.

e For M C N, M is an elementary submodel if, for every
L-formula (X) and every @ € M, ¢ (@) = ¢V (a). We write
M =<N.

¢ An embedding between metric structures is a map which
preserves the functions and relations. An embedding is
elementary if its image is an elementary submodel of the range.

e For atheory T, Mod(T) is the category of models of T with
elementary maps as morphisms. Such a class is called an
elementary class.

Notice that by £o$’ Theorem, any metric structure M embeds
elementarily into its ultrapower MY for any ultrafilter ¢/ via the
diagonal embedding.



Downward Lowenheim-Skolem

Proposition (Tarski-Vaught)

If M C N then M is an elementary submodel if for every formula
o(x,y), re Randae M, if (infy o(x,a))V < r then there is b € M
such that (¢(b,a))N < r.

Theorem (DLS)

Suppose that N is an L-structure and A is a subset of N'. Then there
is an elementary submodel M C N such that

1. A s contained in M and
2. forevery sort S,
X(SM) < x(A) + |£]

where x gives the density character of the given space.



Some abstract model theory

Theorem
For a class of L-structures C, TFAE

1. C is an elementary class.

2. C is closed under isomorphisms, ultraproducts and elementary
submodels.

3. C is closed under isomorphisms, ultraproducts and ultraroots.

Theorem

Continuous first order logic is the maximal logic on metric structures
which satisfies compactness, the downward Léwenheim-Skolem
theorem and unions of elementary chains.



