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Overview

• Lecture 1: Ultraproducts and continuous logic
• Lecture 2: C∗-algebras and II1 factors
• Lecture 3: Definable sets

See www.math.mcmaster.ca/∼bradd/NashvilleCMTOA.html for the
slides and links to other resources.



Filters and Ultrafilters
Definition
If X is a set and F ⊆ P(X ) then F is said to be a filter if
• ∅ 6∈ F ,
• if A,B ∈ F then A ∩ B ∈ F , and
• if A ∈ F and A ⊆ B ⊆ X then B ∈ F .

Lemma
G ⊆ P(X ) is contained in a filter iff G has the finite intersection
property i.e. for every finite G0 ⊆ G,

⋂
G0 6= ∅.

Definition
An ultrafilter on X is a filter F such that for every A ⊆ X , either A ∈ F
or X \ A ∈ F .

Lemma
• If F is a filter on X then F is an ultrafilter iff it is a maximal filter.
• Any filter on X can be extended to an ultrafilter.



Ultralimits

Now suppose U is an ultrafilter on a set I and r = 〈ri : i ∈ I〉 is an
I-indexed family of real numbers. We define the ultralimit of r with
respect to U as follows:

lim
i→U

ri = r iff for every ε > 0, {i ∈ I : |r − ri | < ε} ∈ U .

Lemma
If r is bounded then
• lim

i→U
ri exists and is unique.

• lim
i→U

ri = inf{B : {i ∈ I : ri < B} ∈ U}.

• lim
i→U

ri = sup{B : {i ∈ I : ri > B} ∈ U}.



Ultraproducts of metric spaces

Fix an index set I, an ultrafilter U on I and uniformly bounded metric
spaces (Xi ,di ) for i ∈ I i.e. there is some B so that for all i and all
x , y ∈ Xi , di (x , y) ≤ B. Define d on

∏
i∈I

Xi as follows:

d(x , y) = lim
i→U

di (xi , yi )

Lemma
d is a pseudo-metric on

∏
i∈I

Xi .

Definition
The ultraproduct of the Xi ’s with respect to U ,

∏
U Xi , is the metric

space obtained by quotienting
∏

i∈I Xi by d . If all the Xi ’s are equal to
a fixed X we will often write XU for this ultraproduct and call it the
ultrapower.



Exercises

• Show that for any I and ultrafilter U on I, [0,1]U ∼= [0,1]. More
generally, show that for a compact metric space X , XU ∼= X .

• Show that if Xi is an I-indexed family of uniformly bounded
complete metric spaces then

∏
U Xi is complete.

• Show for any family of uniformly bounded metric spaces Xn for
n ∈ N,

∏
U Xn is complete.

• Show that this definition of ultraproduct is the same as the
discrete or set-theoretic ultraproduct when the metric on the
metric spaces is discrete {0,1}-valued.



Metric structures

• We want to add more structure to a (bounded) metric space; for
now let’s consider a single additional function f .

• So we will have a bounded metric space (X,d) and a function f
say of one variable. We do want that the ultraproduct of these
structures is still a structure of the same kind. So how do we
define f on the ultrapower of X?

• f must be continuous!
• f must be uniformly continuous!
• There is nothing special about one variable; these arguments

apply to functions of many variables.



Metric structures cont’d

• What about relations? Imagine that we have a one-variable
relation R (taking values somewhere) on a metric space and we
want to make sense of it in the ultrapower.

• Its range must be compact and R must be uniformly continuous.
• There is really no loss in assume that the range of R is [0,1] or

some other compact interval in the reals.
• Again there is nothing special about one-variable; we can have

relations of many variables.



The language of a metric structure

A language L will consist of
• a set S called sorts;
• F , a family of function symbols. For each f ∈ F we specify the

domain and range of f : dom(f ) =
∏n

i=1 Si where S1, . . . ,Sn ∈ S
and rng(f ) = S where S ∈ S. Moreover, we also specify a
continuity modulus. That is, for each i ≤ n we are given
δf

i : [0,1]→ [0,1]; and
• R, a family of relation symbols. For each R ∈ R we are given the

domain dom(R) =
∏n

i=1 Si where S1, . . . ,Sn ∈ S and the
rng(R) = KR for some closed interval KR . Moreover, for each i ,
we specify a continuity modulus δR

i : [0,1]→ [0,1].
• For each S ∈ S, we have one special relation symbol dS with

domain S × S and range of the form [0,Bs]. It’s continuity moduli
are the identity functions.



Definition of a metric structure

A metric structureM interprets a language L; it will consist of
• an S-indexed family of complete bounded metric spaces

(SM,dMS ) with bound BS for S ∈ S;
• a family of functions fM for every f ∈ F such that

dom(fM) =
∏n

i=1 SMi where dom(f ) =
∏n

i=1 Si and
rng(fM) = SM where rng(f ) = S. fM is uniformly continuous as
specified by the uniform continuity moduli associated to f ; that is
for every i ≤ n, a1 ∈ SMi , . . . ,an ∈ SMn and a′i ∈ SMi , for every
ε > 0 and δ = δf

i (ε) if dMSi
(ai ,a′i ) < δ then

dMS (fM(a1, . . . ,ai , . . . ,an), fM(a1, . . . ,a′i , . . . ,an)) ≤ ε;

• a family of relations RM for every R ∈ R such that
dom(RM) =

∏n
i=1 SMi where dom(R) =

∏n
i=1 Si and

rng(RM) = KR . RM is uniformly continuous as specified by the
uniform continuity moduli associated to R as above.



Examples of metric structures

Some simple examples:
• Any complete bounded metric space (X ,d). This has the empty

family of functions and relations although we often count the
metric as a relation (why is it uniformly continuous?)

• Any ordinary first order structure M with some collection of
functions and relations. To see this as a metric structure, we put
the discrete {0,1}-valued metric on M to make it a bounded
metric space. All functions become uniformly continuous.
Relations which are usually thought of as subsets of Mn become
{0,1}-valued functions - again they are uniformly continuous.



Banach space

• A Banach space X is a complete normed linear space; how can
we see this as a metric structure?

• Let Bn be the ball of radius n centered at the origin in X ; Bn is a
bounded complete metric space with respect to the metric
induced by the norm.

• There are inclusion maps between Bn and Bm if n ≤ m.
• 0 is a constant (our functions can have arity 0!) in B1.
• For scalars λ and for every n, there is a unary function λn which

is scalar multiplication by λ on Bn; this function has range in Bm
where m is the least integer greater than or equal to n|λ|.

• The operation of addition has to be similarly divided up: for
m,n ∈ N, there is an operation +m,n which takes Bm × Bn to
Bm+n.



Banach space, cont’d

• The metric on each ball is induced by the norm i.e.
dn(x , y) := ‖x − y‖ is the metric on Bn.

• So formally a Banach space can be thought of as a metric
structure by considering

• The family of bounded metric spaces Bn for all n ∈ N with metrics
dn, as well as

• the family of functions 0, λn for scalars λ and n ∈ N, inclusion maps
between the sorts, and +m,n for all m, n ∈ N.

• One checks easily that these functions and relations are
uniformly continuous. The relations have bounded range since
they are restricted to bounded balls.



Ultraproducts of metric structures

Fix a language L, an index set I, an ultrafilter U on I and L-structures
Mi for i ∈ I.

Definition
The ultraproduct of theMi ’s with respect to U ,

∏
UMi is the

L-structureM defined as follows:
1. for every sort S, SM =

∏
U SMi with metric dMS = lim

i→U
dMi

S ,

2. for every function symbol f with range S

fM(x̄) = 〈fMi (x̄i ) : i ∈ I〉/dMS , and

3. for every relation symbol R,

RM = lim
i→U

RMi .

If all of theMi ’s are a fixed N , we call this the ultrapower and write
NU .



A calculation (exercise)

• Suppose that (Xi ,di ) are uniformly bounded metric spaces for all
i ∈ I, U is an ultrafilter on I and fi is an n-ary uniformly continuous
relation with a fixed continuity modulus for all i ∈ I and range in
K , a compact interval.

• Claim: Suppose that (X ,d , f ) is the ultraproduct
∏
U

(Xi ,di , fi ) and

a2, . . . ,an ∈ X then

sup
x∈X

f (x ,a2, . . . ,an) = lim
i→U

sup
x∈Xi

fi (x ,ai
2, . . . ,a

i
n).



Terms and formulas
For a language L, terms are defined inductively from function symbols
and variables by composition exactly as in discrete logic. The only
wrinkle is that one needs to keep track of the continuity modulus of
terms determined by composition. Formulas are defined inductively.

Definition
• Suppose R is a relation symbol in L with dom(R) =

∏n
i=1 Si and

rng(R) = KR , and τi are terms where rng(τi ) = Si for all i . Then
R(τ1, . . . , τn) is a formula. The domain, range and continuity
moduli are those obtained by composition.

• Suppose ϕi (x) is a formula with range Kϕi for all i ≤ n and
f : Rn → R is a continuous function. Then f (ϕ1, . . . , ϕn) is a
formula with range f (

∏n
i=1 Kϕi ) and domain and continuity moduli

determined by composition.
• If ϕ is a formula and x is a variable then supx ϕ and infx ϕ are

both formulas. The sort of x is removed from the domain; the
range and continuity moduli for the remaining variables stay the
same.



Interpretations
Fix a metric structureM for a language L.
• Terms are interpreted by composition inductively as usual.
• For the formula R(τ1(x), . . . , τn(x)) where R is a relation in L and
τ1, . . . , τn are terms, its interpretation is given, for every
appropriate a ∈M, by

RM(τM1 (a), . . . , τMn (a))

• If ϕi (x) is a formula for all i ≤ n and f : Rn → R is a continuous
function then if ψ is the formula f (ϕ1, . . . , ϕn) then
ψM := f (ϕM1 , . . . , ϕMn ).

• Suppose ϕ(x , y) is a formula and a ∈M is a tuple appropriate
for the variables y and x is of sort S. Then

(supx ϕ(x ,a))M := sup{ϕM(b,a) : b ∈ SM}

and
(infx ϕ(x ,a))M := inf{ϕM(b,a) : b ∈ SM}.



Basic properties

Proposition
In an L-structureM
• the interpretations of terms inM are uniformly continuous

functions with continuity modulus specified by the definition of
the term, and

• all formulas when interpreted inM, define uniformly continuous
functions with domains, range and continuity modulus specified
by the definition of the formula.

A sentence is a formula with no free variables. It is a consequence of
the proposition that any sentence in L takes on a value in a metric
structure in a compact interval specified by L and this interval is
independent of the given structure.



Theories

• For a language L, SentL is the set of sentences of L.
• The theory of an L-structureM is the function

Th(M) : SentL → R defined by, for any sentence ϕ,

Th(M)(ϕ) = ϕM

Notice that Th(M) is a linear functional on the space of
sentences and is in fact determined by its kernel. We then
sometimes refer to {ϕ ∈ SentL : ϕM = 0} as the theory ofM.

• An (L-)theory is a set of sentences T which is contained in
Th(M) for someM.



Example

We will write out and interpret some formulas and sentences about
Banach spaces.
• There are universal (sup) sentences expressing the fact that we

have a normed linear space. For instance, we have

supx∈B1
supy∈B1

dB2 (x +1,1 y , y +1,1 x)

which evaluates to 0 and partially expresses that + is
commutative.

• We have the triangle inequality:

supx∈Bn
supy∈Bn

supz∈Bn
(dBn (x , z) .− (dBn (x , y) + dBn (y , z)).

• We also have supx∈B1
(dB1 (x ,0) .− 1).



Example, cont’d

• Consider the sentence, for every n ∈ N,

sup
x∈Bn

min{1 .− d(x , i(0)), inf
y∈B1

d(x , i(y))}

• It is possible to determine if a metric space is compact using
sentences in continuous logic. Consider

ϕ(ε,n) := infx1,...,xn supy maxi{d(xi , y) .− ε/2}.

• X is compact iff for every ε there is n such that ϕ(ε,n)X = 0.
• It follows that one can deduce from the theory of a given Banach

space if it is compact.
• In particular there is a set of sentences which expresses that a

Banach space is infinite-dimensional or equivalently not compact.



Łoś’ Theorem

Theorem
SupposeMi are L-structures for all i ∈ I, U is an ultrafilter on I, ϕ(x)

is an L-formula and a ∈M :=
∏
i∈I

Mi/U then

ϕM(a) = lim
i→U

ϕMi (ai ).



Satisfiability

Definition
• We say a set of sentences Σ in a language L is satisfied if there

is an L-structureM such that for every sentence in Σ holds inM
i.e. for every ϕ ∈ Σ, ϕM = 0.

• We say such a Σ is finitely satisfied if every finite subset of Σ is
satisfied.

• For a set of sentence Σ and ε > 0, the ε-approximation of Σ is

{|ϕ| .− ε : ϕ ∈ Σ}

• Σ is approximately finitely satisfied if for every ε > 0, the
ε-approximation of Σ is finitely satisfiable.



Compactness

Theorem
TFAE for a set of sentences Σ in a language L
• Σ is satisfiable.
• Σ is finitely satisfiable.
• Σ is approximately finitely satisfiable.



Embeddings and elementary submodels

• Suppose thatM and N are L-structures such that the universe
ofM is a closed subset of N . M is called a submodel if all
functions and relations from L onM are the restriction of those
from N . We writeM⊆ N .

• ForM⊆ N ,M is an elementary submodel if, for every
L-formula ϕ(x) and every a ∈M, ϕM(a) = ϕN (a). We write
M≺ N .

• An embedding between metric structures is a map which
preserves the functions and relations. An embedding is
elementary if its image is an elementary submodel of the range.

• For a theory T , Mod(T ) is the category of models of T with
elementary maps as morphisms. Such a class is called an
elementary class.

Notice that by Łoś’ Theorem, any metric structureM embeds
elementarily into its ultrapowerMU for any ultrafilter U via the
diagonal embedding.



Downward Löwenheim-Skolem

Proposition (Tarski-Vaught)
IfM⊆ N thenM is an elementary submodel if for every formula
ϕ(x , y), r ∈ R and a ∈M, if (infx ϕ(x ,a))N < r then there is b ∈M
such that (ϕ(b,a))N < r .

Theorem (DLS)
Suppose that N is an L-structure and A is a subset of N . Then there
is an elementary submodelM⊆ N such that

1. A is contained inM and
2. for every sort S,

χ(SM) ≤ χ(A) + |L|

where χ gives the density character of the given space.



Some abstract model theory

Theorem
For a class of L-structures C, TFAE

1. C is an elementary class.
2. C is closed under isomorphisms, ultraproducts and elementary

submodels.
3. C is closed under isomorphisms, ultraproducts and ultraroots.

Theorem
Continuous first order logic is the maximal logic on metric structures
which satisfies compactness, the downward Löwenheim-Skolem
theorem and unions of elementary chains.


