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Łoś’ Theorem

Theorem
SupposeMi are L-structures for all i ∈ I, U is an ultrafilter on I, ϕ(x)

is an L-formula and a ∈M :=
∏
i∈I

Mi/U then

ϕM(a) = lim
i→U

ϕMi (ai ).



Satisfiability

Definition
• We say a set of sentences Σ in a language L is satisfied if there

is an L-structureM such that for every sentence in Σ holds inM
i.e. for every ϕ ∈ Σ, ϕM = 0.

• We say such a Σ is finitely satisfied if every finite subset of Σ is
satisfied.

• For a set of sentence Σ and ε > 0, the ε-approximation of Σ is

{|ϕ| .− ε : ϕ ∈ Σ}

• Σ is approximately finitely satisfied if for every ε > 0, the
ε-approximation of Σ is finitely satisfiable.



Compactness

Theorem
TFAE for a set of sentences Σ in a language L
• Σ is satisfiable.
• Σ is finitely satisfiable.
• Σ is approximately finitely satisfiable.



Embeddings and elementary submodels

• Suppose thatM and N are L-structures such that the universe
ofM is a closed subset of N . M is called a submodel if all
functions and relations from L onM are the restriction of those
from N . We writeM⊆ N .

• ForM⊆ N ,M is an elementary submodel if, for every
L-formula ϕ(x) and every a ∈M, ϕM(a) = ϕN (a). We write
M≺ N .

• An embedding between metric structures is a map which
preserves the functions and relations. An embedding is
elementary if its image is an elementary submodel of the range.

• For a theory T , Mod(T ) is the category of models of T with
elementary maps as morphisms. Such a class is called an
elementary class.

Notice that by Łoś’ Theorem, any metric structureM embeds
elementarily into its ultrapowerMU for any ultrafilter U via the
diagonal embedding.



Downward Löwenheim-Skolem

Proposition (Tarski-Vaught)
IfM⊆ N thenM is an elementary submodel if for every formula
ϕ(x , y), r ∈ R and a ∈M, if (infx ϕ(x ,a))N < r then there is b ∈M
such that (ϕ(b,a))N < r .

Theorem (DLS)
Suppose that N is an L-structure and A is a subset of N . Then there
is an elementary submodelM⊆ N such that

1. A is contained inM and
2. for every sort S,

χ(SM) ≤ χ(A) + |L|

where χ gives the density character of the given space.



Some abstract model theory

Theorem
For a class of L-structures C, TFAE

1. C is an elementary class.
2. C is closed under isomorphisms, ultraproducts and elementary

submodels.
3. C is closed under isomorphisms, ultraproducts and ultraroots.

Theorem
Continuous first order logic is the maximal logic on metric structures
which satisfies compactness, the downward Löwenheim-Skolem
theorem and unions of elementary chains.



Linear operators

• Fix a Hilbert space H and consider a linear operator A on H. The
operator norm of A is defined as

‖A‖ := sup{‖Ax‖ : x ∈ H, ‖x‖ = 1}.

If this is defined, we call A bounded.
• We write B(H) for the algebra of all bounded operators on H.
• B(H) carries a natural complex vector space structure and

multiplication is composition. There is an adjoint operation
defined via the inner product on H: for A ∈ B(H), A∗ satisfies, for
all x , y ∈ H,

〈Ax , y〉 = 〈x ,A∗y〉.

• The operator norm puts a normed linear structure on B(H) and
the norm satisfies the C∗-identity ‖A∗A‖ = ‖A‖2 for all A ∈ B(H).



C∗-algebras

Definition
• A concrete C∗-algebra is a norm closed *-subalgebra of B(H) for

some Hilbert space H.
• An abstract C∗-algebra is Banach *-algebra which satisfies the

C∗-identity.

Example

• For any Hilbert space H, B(H) is a concrete C∗-algebra. In
particular, Mn(C), n × n complex matrices, is a C∗-algebra for all
n.

• C(X ), all continuous functions on a compact, Hausdorff space X
is an abelian (abstract) C∗-algebra. The norm is the sup-norm.
By a result of Gelfand and Naimark, these are all the unital
abelian C∗-algebras.



C∗-algebras

Example

• C∗-algebras are closed (as abstract C∗-algebras) under direct
sums and direct limits with *-homomorphism embeddings as
connecting maps.

• Any finite-dimensional C∗-algebra is the direct sum of finitely
many copies of matrix algebras.

Theorem (Gelfand-Naimark-Segal)
Every abstract C∗-algebra is isomorphic to a concrete C∗-algebra.



C∗-algebraic ultraproducts

• A dead give-away that model theory is involved is that operator
algebraists are using ultraproducts.

• Suppose Ai are C∗-algebras for all i ∈ I and that U is an ultrafilter
on I. Consider the bounded product∏bAi := {ā ∈

∏
Ai : lim

i→U
‖ai‖ <∞}

and the two-sided ideal cU

{ā ∈
∏bAi : lim

i→U
‖ai‖ = 0}.

The ultraproduct,
∏
U Ai is defined as

∏b Ai/cU .
• One checks that multiplication, addition and the adjoint are

well-defined coordinatewise modulo cU .



C∗-algebras as metric structures

• We treat C∗-algebras as we did Banach spaces: there are sorts
for each ball of radius n ∈ N.

• There are inclusion maps between the balls. Additionally there
are functions for the restriction of all the operations to the balls.
This involves the addition, multiplication, scalar multiplication and
the adjoint.

• The metric is given via the operator norm as ‖x −y‖ on each ball.
• It is routine to check that all of these functions are uniformly

continuous (the only issue is multiplication and this holds
because we have restricted the norm).

• The sorts are complete since C∗-algebras are complete.
• Do we have an elementary class? You would think so since

C∗-algebras are closed under ultraproducts and subalgebras.



Axioms for C∗-algebras
• There are many universal axioms expressing that a C∗-algebra is

a Banach *-algebra. These involve saying that two terms are
equal or that some norm or other is equal to or less than
something else.

• For instance, to say τ(x̄) = σ(x̄) we need to write
supx̄ d(τ(x̄), σ(x̄)) which is awful so we write the first and mean
the second.

• For the metric, we have d(x ,0) = ‖x‖ and d(x , y) = ‖x − y‖.
One can now write out the axioms for a Banach space.

• Include ‖x∗‖ = ‖x‖ and the C∗-identity, ‖x∗x‖ = ‖x‖2.
• Now comes the fussy bits about using balls: we have

sup
x∈B1

‖x‖ ≤ 1 and sup
x∈Bn

min{1 .− ‖x‖, inf
y∈B1

‖x − y‖}.

• This feels a little awkward since operator algebraists know that
C∗-algebras are closed under subalgebras and we know that
should mean the axioms are universal. They are if you introduce
enough terms!



A second topology

• The weak operator topology on B(H) is induced by the family of
semi-norms given by, for every ζ, η ∈ H,

A 7→ |〈Aζ, η〉|.

• M ⊆ B(H) is a von Neumann algebra if it is a unital *-algebra
closed in the weak operator topology.

• Equivalently, any unital *-algebra M ⊆ B(H) which satisfies
M ′′ = M is a von Neumann algebra where

M ′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ M}.



Traces and tracial von Neumann algebras

Definition
A linear functional τ on a C∗-algebra M is a (finite, normalized) trace
if
• it is positive (τ(a∗a) ≥ 0 for all a ∈ M),
• τ(a∗a) = τ(aa∗) for all a ∈ M, and
• τ(1) = 1.

We say it is faithful if τ(a∗a) = 0 implies a = 0.
A tracial von Neumann algebra M is a von Neumann algebra with a
faithful trace τ . τ induces a norm on M

‖a‖2 =
√
τ(a∗a).



Examples

• Mn(C) with the normalized trace is a tracial vNa; B(H) for
infinite-dimensional H is not.

• Inductive limits of tracial von Neumann algebras are tracial von
Neumann algebras. In particular, R, the inductive limit of the
Mn(C)’s is a tracial von Neumann algebra called the hyperfinite
II1 factor.

• L(G) - suppose H has an orthonormal generating set ζh for
h ∈ G. Let ug for g ∈ G be the operator determined by

ug(ζh) = ζgh.

L(G) is the von Neumann algebra generated by the ug ’s. It is
tracial: for a ∈ L(G), let τ(a) = 〈a(ζe), ζe〉.



Tracial ultraproducts

Suppose Mi are von Neumann algebras with faithful traces τi for all
i ∈ I and U is an ultrafilter on I. Again, the bounded product is∏bMi := {ā ∈

∏
Mi : lim

i→U
‖ai‖ <∞}

and now consider the two-sided ideal

cU = {ā ∈
∏bMi : lim

i→U
τi (a∗i ai ) = 0}.

The ultraproduct,
∏
U Mi , is defined as

∏b Mi/cU . It is a tracial von
Neumann algebra with the trace given by τ(x̄) = limi→U τi (xi ).



Tracial vNas as metric structures

• The tracial ultraproducts actually guide us in figuring out how to
see tracial von Neumann algebras as metric structures.

• As with C*-algebras, we introduce sorts for the balls of operator
norm n for each n ∈ N. The big difference is that the operator
norm will NOT be in the language.

• The basic functions are again considered as partitioned across
the sorts together with the necessary inclusion maps. We also
have the trace which formally we have to break into its real and
imaginary parts.

• The metric on each ball is induced by the 2-norm; it is complete
on each ball. It is critical that the 2-norm is restricted to a
bounded ball.



Do tracial vNas form an elementary class?

• Let K be the class of metric structures arising from tracial von
Neumann algebras as on the previous slide. Is K an elementary
class? Let’s check this semantically.

• Tracial ultraproducts of von Neumann algebras are equivalent to
the ultraproduct in the metric structure sense for tracial von
Neumann algebras viewed as metric structures. So K is closed
under ultraproducts (and isomorphism).

• The closure under subalgebras is handled by the very same trick
as with C∗-algebras.

• That K and the category of tracial von Neumann algebras is an
equivalence of categories is taken care of by the Kaplansky
density theorem.



II1 factors

• A von Neumann algebra whose centre is C is called a factor.
• A tracial factor is type I if all its projections have rational trace

and is type II1 if the range of the trace on projections is [0,1].
• R, RU ,

∏
U Mn(C) and L(Fn) are all II1 factors.

• The class of II1 factors is an elementary class.



Property Γ

• Consider M any II1 factor and the partial type

p(x) = {‖[x ,m]‖2 : m ∈ M}.

• (Murray-von Neumann) M has property Γ if p is not algebraic
relative to the theory of M. That is, p has a realization outside of
M in some elementary extension of M. Property Γ is elementary.

• R has property Γ;
∏
U Mn(C) does not have property Γ; neither

does L(Fn).



Central sequence algebras

• Suppose that M is a separable II1 factor; M ≺ MU and consider
all realizations of p in MU - it is M ′ ∩MU , the relative commutant
or the central sequence algebra. It is also a tracial von Neumann
algebra.

• There are three cases (McDuff):
• M does not have property Γ,
• M has property Γ and the relative commutant is abelian (and does

not depend on U), or
• M has a non-abelian relative commutant (it is type II1).

• McDuff asked if in the third case, the isomorphism type depends
on U .

Theorem (Farah, H., Sherman)
The answer to McDuff’s question is yes because the theory of all II1
factors is unstable!



Theories of II1 factors

Theorem (Boutonnet, Chifan, Ioana)
There are continuum many theories of II1 factors. In fact, McDuff’s
original examples of continuum many non-isomorphic II1 factors are
not elementarily equivalent.

• The free group factor problem asks if L(Fm) and L(Fn) are not
isomorphic for m 6= n. A model theoretic version of this question:
are L(Fm) and L(Fn) elementarily equivalent?

• We do know that L(F∞) and
∏
U L(Fn) have the same ∀∃-theory

for non-principal U .
• Related questions: for non-principal U , is the theory of

∏
U Mn(C)

independent of U? How are the theory of ultraproducts of matrix
algebras related to the theories of free group factors?


