
Continuous Model Theory
Lecture 3: Practical definability

Bradd Hart

May 9, 2017



Tracial vNas as metric structures

• The tracial ultraproducts actually guide us in figuring out how to
see tracial von Neumann algebras as metric structures.

• As with C*-algebras, we introduce sorts for the balls of operator
norm n for each n ∈ N. The big difference is that the operator
norm will NOT be in the language.

• The basic functions are again considered as partitioned across
the sorts together with the necessary inclusion maps. We also
have the trace which formally we have to break into its real and
imaginary parts.

• The metric on each ball is induced by the 2-norm; it is complete
on each ball. It is critical that the 2-norm is restricted to a
bounded ball.



Do tracial vNas form an elementary class?

• Let K be the class of metric structures arising from tracial von
Neumann algebras as on the previous slide. Is K an elementary
class? Let’s check this semantically.

• Tracial ultraproducts of von Neumann algebras are equivalent to
the ultraproduct in the metric structure sense for tracial von
Neumann algebras viewed as metric structures. So K is closed
under ultraproducts (and isomorphism).

• The closure under subalgebras is handled by the very same trick
as with C∗-algebras.

• That K and the category of tracial von Neumann algebras is an
equivalence of categories is taken care of by the Kaplansky
density theorem.



II1 factors

• A von Neumann algebra whose centre is C is called a factor.
• A tracial factor is type I if all its projections have rational trace

and is type II1 if the range of the trace on projections is [0,1].
• R, RU ,

∏
U Mn(C) and L(Fn) are all II1 factors.

• The class of II1 factors is an elementary class.



Property Γ

• Consider M any II1 factor and the partial type

p(x) = {‖[x ,m]‖2 : m ∈ M}.

• (Murray-von Neumann) M has property Γ if p is not algebraic
relative to the theory of M. That is, p has a realization outside of
M in some elementary extension of M. Property Γ is elementary.

• R has property Γ;
∏
U Mn(C) does not have property Γ; neither

does L(Fn).



Central sequence algebras

• Suppose that M is a separable II1 factor; M ≺ MU and consider
all realizations of p in MU - it is M ′ ∩MU , the relative commutant
or the central sequence algebra. It is also a tracial von Neumann
algebra.

• There are three cases (McDuff):
• M does not have property Γ,
• M has property Γ and the relative commutant is abelian (and does

not depend on U), or
• M has a non-abelian relative commutant (it is type II1).

• McDuff asked if in the third case, the isomorphism type depends
on U .

Theorem (Farah, H., Sherman)
The answer to McDuff’s question is yes because the theory of all II1
factors is unstable!



Theories of II1 factors

Theorem (Boutonnet, Chifan, Ioana)
There are continuum many theories of II1 factors. In fact, McDuff’s
original examples of continuum many non-isomorphic II1 factors are
not elementarily equivalent.

• The free group factor problem asks if L(Fm) and L(Fn) are not
isomorphic for m 6= n. A model theoretic version of this question:
are L(Fm) and L(Fn) elementarily equivalent?

• We do know that L(F∞) and
∏
U L(Fn) have the same ∀∃-theory

for non-principal U .
• Related questions: for non-principal U , is the theory of

∏
U Mn(C)

independent of U? How are the theory of ultraproducts of matrix
algebras related to the theories of free group factors?



Types

Fix a theory T in a language L. We consider (partial) functions p on
the space of formulas Fx for a tuple x̄ of sorted variables to R.

Definition
1. p is a (partial) type if there is a modelM of T and a ∈M of the

appropriate sort such that p(ϕ) = ϕM(a) for all ϕ ∈ dom(p). We
say that a realizes p.

2. p is called a complete type if the domain of p is Fx .

Fact
• p is a type iff it is finitely satisfied i.e. if the restriction to every

finite subset of its domain is a type.
• A complete type is a linear functional on Fx .



A topology on the type space

We fix a language L and a complete theory T in this language. For a
tuple of sorts S from L, we define the set Sx (T ) to be all complete
types defined on Fx .
The logic topology on Sx (T ) is the restriction of the weak-* topology
on the dual space of Fx . Equivalently, the collection of sets

{p ∈ Sx (T ) : p(ϕ) < r} for every formula ϕ and real number r ,

form the collection of basic open sets.

Fact
• The logic topology on Sx (T ) is compact and Hausdorff.
• If ϕ is a formula then the function fϕ from Sx (T ) to R given by

p 7→ p(ϕ) is continuous.



What is a formula?
Relative to a theory T , define a pseudo-norm on Fx̄ by

‖ϕ(x̄)‖ := sup{|ϕM(ā)| : ā ∈M}.

This puts a normed linear structure on Fx̄ .

Proposition
The following are equivalent:

1. f is a continuous function from Sx (T ) to R.
2. f is the uniform limit of functions of the form fϕ i.e. for every n

there is a formula ϕn such that for all p, |f (p)− p(ϕn)| ≤ 1/n.

Definition
A Cauchy sequence of formulas ϕ in Fx will be called a definable
predicate and interpreted in an L-structureM by

ϕM(a) = lim
n→∞

ϕMn (a).

Of course what we are doing is extending the notion of formula to the
Banach space generated by Fx .



Zero sets and distance predicates

Fix a theory T in a language L and a modelM of T .
• For a definable predicate ϕ(x̄), the zero set of ϕ inM is

Z (ϕM) := {ā ∈M : ϕM(ā) = 0}.

• If X is a non-empty closed subset of some product of sorts inM
we call P(x) = d(x ,X ) = inf{d(x , y) : y ∈ X} the distance
predicate for X .



Definable sets

We introduce the category Met where the objects are bounded metric
spaces and the morphisms are isometries.

Definition
Suppose we have a theory T in a language L and Si for i ≤ n are
sorts in L. We call a functor

X : Mod(T )→ Met

a uniform assignment relative to T if for every modelM of T , X (M)
is a closed subset of

∏m
j=1 SMj and X is just restriction on morphisms.

This assignment is called a definable set if, for all formulas ψ(x̄ , ȳ),
the functions defined for allM, models of T , by

sup
x̄∈X(M)

ψM(x̄ , ȳ) and inf
x̄∈X(M)

ψM(x̄ , ȳ)

are definable predicates for T .



Examples

• Sorts are definable sets as are products of sorts.
• Products of definable sets are definable.
• The range of a term is definable.
• For example, in the operator algebra setting, the set of

self-adjoint elements in any algebra is definable as is the set of
positive elements: (x + x∗)/2 and x∗x are the two terms in
question.



Critical remarks about definable sets

• A natural source of uniform assignments is the zero-set of any
definable predicate.

• If an assignment is a definable set then it is the assignment
arising from the zero-set of some definable predicate. Just
choose ψ(x̄ , ȳ) := d(x̄ , ȳ) and parse inf

x̄∈X(M)
ψ(x̄ , ȳ).

• The definition of definable set could be read

“Definable sets are those sets you can quantify over.”

Notice in the discrete case, you can quantify over the solution set
of any formula.

• There are lots of zero sets which are NOT definable sets; we will
see some in a few slides.



A useful lemma

Lemma (MTFMS, 2.10)
Suppose that F ,G : X → [0,1] are functions such that

∀ε > 0 ∃δ > 0 ∀x ∈ X (F (x) ≤ δ =⇒ G(x) ≤ ε)

Then there exists an increasing, continuous function α : [0,1]→ [0,1]
such that α(0) = 0 and

∀x ∈ X (G(x) ≤ α(F (x))).



A second characterization of definable sets

Theorem
Suppose that X is a uniform assignment relative to a theory T . Then
the following are equivalent:

1. This assignment is a definable set.
2. The distance predicate d(x̄ ,X ) is a definable predicate for T .
3. There is a definable predicate ϕ(x̄) so that for any model of T ,
M, Z (ϕM) ⊆ X (M) and for every ε > 0 there is a δ > 0 ,

if ϕM(ā) < δ then d(ā,X (M)) ≤ ε.



A proof

For (2) implies (1), fix a formula ψ. It is uniformly continuous so using
MTFMS 2.10, we can find continuous α such that for all x̄ , ȳ and z̄

|ψ(x̄ , z̄)− ψ(ȳ , z̄)| ≤ α(d(x̄ , ȳ)).

Consider
inf
z̄

(ψ(x̄ , z̄) + α(d(z̄,X ))) and inf
z̄∈X

ψ(x̄ , z̄).

The claim is that these are equal and the first is a definable predicate.



Examples

• Definable sets are closed under unions.
• In the operator algebra setting, the set of projections in a given

algebra is a definable set.
• This is related to the notion of weakly stable relations: a definable

predicate ϕ(x̄) is said to be weakly stable (or be a weakly stable
relation) relative to the theory T if for every ε > 0 there is a δ > 0
such that ifM is a model of T and ϕM(ā) < δ for some ā ∈M
then there is b̄ ∈M such that ϕ(b̄) = 0 and d(ā, b̄) ≤ ε.

• The zero set of a weakly stable relation is clearly a definable set.
• There are many examples of weakly stable relations in the

operator algebraic literature; for instance, that an n2-tuple xij for
i , j ≤ n are the matrix units of a unital copy of Mn(C).



A third characterization of definable sets

Theorem
Suppose that X is a uniform assignment relative to a theory T . Then
the following are equivalent:

1. This assignment is a definable set.
2. For all sets I, ultrafilters U on I and models of T ,Mi for i ∈ I, if
M =

∏
UMi then

X (M) =
∏
U

X (Mi ).



Examples of definable sets

• The set of normal elements in B(H) is not definable (or more
correctly the set of normal elements is not a definable set relative
to the theory of B(H) or the theory of C∗-algebras.)

• The ball of radius 1 around a point in the ball of radius 1 in a
Hilbert space. Far more generally, if the underlying metric space
has geodesics then balls will be definable sets.

• Ultrametrics give examples that are not definable. Here is a toy
example: on the interval [0,2] define the metric d

d(x , y) =

{
max{x , y} if x 6= y
0 if x = y

If we fix 0 as a constant than the zero-set of d(0, x) ≤ 1 doesn’t
survive ultrapowers. These types of examples arise naturally
from metrics associated to certain valuations.



Beth definability

Theorem
Suppose that L0 ⊆ L1 ⊆ L2 are languages, L0 and L1 have the same
sorts and T is an L2-theory. Further suppose wheneverM is a model
of T ,M0 =M �L0 and U is an ultrafilter then:

if f :M0 →MU0 is an L0-elementary map then f is also an L1-map.

Then every L1-formula is T -equivalent to a definable predicate in L0.

Corollary
Suppose L0 ⊆ L1 are two languages with the same sorts, Ti is a
theory in Li for i = 0,1 and the forgetful functor

F : Mod(T1)→ Mod(T0)

given by restriction to L0 is an equivalence of categories. Then every
L1-formula is T1-equivalent to a definable predicate in L0.



Nuclear algebras
• A linear map ϕ : A→ B is positive if ϕ(a∗a) ≥ 0 for all a ∈ A

(positive elements go to positive elements).
• ϕ is completely positive if for all n, ϕ(n) : Mn(A)→ Mn(B) is

positive.
• ϕ is contractive if ‖ϕ‖ ≤ 1; *-homomorphisms are cpc maps.

Definition (Completely positive approximation property)
A C*-algebra A is nuclear if for every ā ∈ A and ε > 0 there is an n
and cpc maps

ϕ : A→ Mn(C) and ψ : Mn(C)→ A

such that
‖ā− ψϕ(ā))‖ < ε.

• Examples: Abelian C*-algebras, Mn(C)

• Inductive limits of nuclear algebras; nuclear algebras are closed
under ⊗ and direct sum.



A helpful picture

A A A . . .

Mn1 (C) Mn2 (C) Mn3 (C) . . .

id id id

ψ3
ϕ1 ϕ2 ϕ3

ψ1 ψ2

The general classification problem is to give a complete (usable) set
of invariants for all (unital), separable, simple nuclear algebras.



Model theoretic characterization of nuclear algebras

Consider, for k ,n ∈ N, the predicate defined on Ak
1 by

Rk
n (ā) = inf

ϕ,ψ
‖ā− ψ(ϕ(ā))‖

where ϕ : A→ Mn(C) and ψ : Mn(C)→ A range over cpc maps.

Theorem (FHLRTVW)
Rk

n is a definable predicate in the language of C∗-algebras.

Corollary
A C∗-algebra is nuclear if it satisfies, for all k,

supx̄ infn Rk
n (x̄).



A sketch of the proof

• Fix n and k and start with the class C of C∗-algebras. Form the
class K as follows:

K = {(A,RA
n ) : A ∈ C}.

We suppress the k for readability; one checks that these are
metric structures in an appropriate language.

• It suffices to see that K is an elementary class. Then by the
corollary to the Beth definability theorem, Rk

n is a definable
predicate in the language of C∗-algebras.

• This boils down to showing the K is closed under ultraproducts
(think about ultraroots as an exercise).

• So fix some index set I and ultrafilter U on I. Suppose we have
(Ai ,R

Ai
n ) ∈ K and let A =

∏
U Ai .

• We want to show that RA
n = limi→U RAi

n .



A sketch of the proof, cont’d
• Now it is relatively straightforward to see that

RA
n ≤ lim

i→U
RAi

n .

• Suppose that the inequality is strict. Then one can find ā ∈ A,
cpc maps ϕ and ψ as necessary such that

‖ā− ψ(ϕ(ā))‖ < lim
i→U

RAi
n (āi ).

• Consider ψ first. The image of the matrix units from Mn(C) to A
under a cpc map is a definable set. It follows then that there are
cpc maps ψi : Mn(C)→ Ai such that ψ = limı→U ψi .

• We now consider ϕ. This is subtler and we will cheat (but only a
little) and let n = 1.

• So ϕ is a positive linear functional and we will consider ϕ�ā. We
can find āi ∈ Ai and ϕi on Ai such that

ϕ�ā= lim
i→U

ϕi�āi .

• Putting the ϕi ’s together with the ψi ’s is a contradiction to the
strict inequality and we’re done.



Crazy question/conjecture

Question
Suppose that A and B are two separable, unital, simple nuclear
C∗-algebras with the same continuous theory and the same Elliott
invariant. Then are A and B isomorphic?
All known counter-examples to the Elliott conjecture have distinct
continuous theories.


