Practical Definability

Bradd Hart McMaster University

July 25, 2017

Case study: Connes and his ultraproduct

- In his "Injective factors" paper, Connes gives several characterizations of the condition known as property Γ (Theorem 2.1).
- He uses a technical proposition (Proposition 1.3.1) in which he gives a variant of the ultraproduct construction for II₁ factors acting on a Hilbert space.
- As we continuous model theorists know, it is difficult to handle II₁ factors acting on Hilbert spaces and Connes recites the reasons for this even in that paper.
- Still, he uses an ultraproduct so as model theorists we are duty bound to figure out what is going on.

Continuous model theory in a few slides

- Metric language: multi-sorted with designated metric symbol for each sort; function and relation symbols as in classical first order logic but with specified uniform continuity moduli. Relation symbols also come with a bound - this applies to the metric symbols as well.
- Formulas: Atomic formulas are built as usual. Connectives are all real-valued functions; quantifiers are sup and inf.
- Metric structures: Each sort is interpreted as a complete metric space. Functions and relations are interpreted as uniformly continuous functions as specified. Relations are real-valued and respect their bound. Formulas are interpreted naturally.

Ultraproducts of metric structures

Fix a language \mathcal{L} , an index set *I*, an ultrafilter \mathcal{U} on *I* and \mathcal{L} -structures \mathcal{M}_i for $i \in I$.

Definition

The ultraproduct of the \mathcal{M}_i 's with respect to \mathcal{U} , $\prod_{\mathcal{U}} \mathcal{M}_i$ is the \mathcal{L} -structure \mathcal{M} defined as follows:

1. for every sort S, $S^{\mathcal{M}} = \prod_{\mathcal{U}} S^{\mathcal{M}_i}$ with metric $d_S^{\mathcal{M}} = \lim_{i \to \mathcal{U}} d_S^{\mathcal{M}_i}$,

2. for every function symbol f with range S

$$f^{\mathcal{M}}(ar{x})=\langle f^{\mathcal{M}_i}(ar{x}_i):i\in I
angle/d^{\mathcal{M}}_{\mathcal{S}},$$
 and

3. for every relation symbol R,

$$R^{\mathcal{M}} = \lim_{i \to \mathcal{U}} R^{\mathcal{M}_i}.$$

If all of the \mathcal{M}_i 's are a fixed \mathcal{N} , we call this the ultrapower and write $\mathcal{N}^{\mathcal{U}}$.

Łoś' Theorem

Theorem

Suppose \mathcal{M}_i are \mathcal{L} -structures for all $i \in I, \mathcal{U}$ is an ultrafilter on $I, \varphi(\overline{x})$ is an \mathcal{L} -formula and $\overline{a} \in \mathcal{M} := \prod_{i \in I} \mathcal{M}_i / \mathcal{U}$ then

$$\varphi^{\mathcal{M}}(\overline{a}) = \lim_{i \to U} \varphi^{\mathcal{M}_i}(\overline{a}_i).$$

Definable sets

Met is the category of bounded complete metric spaces with isometries as morphisms.

Definition

Suppose we have a theory T in a language \mathcal{L} and S_i for $i \leq n$ are sorts in \mathcal{L} . We call a functor

 $X: \operatorname{Mod}(T) \to \operatorname{Met}$

a uniform assignment relative to *T* if for every model \mathcal{M} of *T*, $X(\mathcal{M})$ is a closed subset of $\prod_{j=1}^{m} S_{j}^{\mathcal{M}}$ and on morphisms, *X* is just restriction. This assignment is called a *definable set* if, for all formulas $\psi(\bar{x}, \bar{y})$, the functions defined for all \mathcal{M} , models of *T*, by

$$\sup_{\bar{x}\in X(\mathcal{M})}\psi^{\mathcal{M}}(\bar{x},\bar{y}) \text{ and } \inf_{\bar{x}\in X(\mathcal{M})}\psi^{\mathcal{M}}(\bar{x},\bar{y})$$

are equivalent to formulas in T.

Semantic approach to definability

Theorem

Suppose that X is a uniform assignment relative to a theory T. Then the following are equivalent:

- 1. This assignment is a definable set.
- 2. For all sets I, ultrafilters U on I and models of T, M_i for $i \in I$, if $M = \prod_{\mathcal{U}} M_i$ then

$$X(\mathcal{M}) = \prod_{\mathcal{U}} X(\mathcal{M}_i).$$

II₁ factors in one slide

- *B*(*H*) is the set of all bounded operators on a Hilbert space *H*. It has the natural structure of a complex *-algebra.
- The weak operator topology is generated by the following open sets: for A ∈ B(H), ε > 0 and x, y ∈ H,

$$\{B \in B(H) : |\langle (A - B)x, y \rangle| < \epsilon\}.$$

- A von Neumann algebra (concretely) is a unital *-subalgebra of B(H) which is closed in the weak operator topology. It is a factor if its centre is C.
- A II₁ factor is an infinite-dimensional factor with a faithful normal trace i.e. a suitably continuous positive linear functional τ which satisfies $\tau(1) = 1$, $\tau(ab) = \tau(ba)$ for all *a* and *b* and $\tau(a^*a) = 0$ iff a = 0.
- The class of II₁ factors for an elementary class in continuous model theory.

Standard form

- If \mathcal{M} is a II₁ factor with faithful, normal trace τ , let $L^2(\mathcal{M}, \tau)$ be the Hilbert space determined by putting the inner product $\langle x, y \rangle = \tau(y^*x)$ on \mathcal{M} . \mathcal{M} acts on $L^2(\mathcal{M}, \tau)$ on the left and 1 is a cyclic separating vector.
- In fact in the II_1 factor case, this is the standard form of such a representation:
 - A II₁ factor \mathcal{M} acting on a Hilbert space H with a cyclic, separating vector Ω ,
 - the inner product on *H* being determined by $\langle a\Omega, \Omega \rangle = \tau(a)$, and
 - a conjugate linear isometric involution *J* on *H* determined by $J(a\Omega) = a^*\Omega$. Note

$$JMJ = M' := \{a \in B(H) : ab = ba \text{ for all } b \in M\}.$$

 By results of Araki, Connes and Haagerup, the standard form is essentially unique.

Standard form is imaginary

- L²(M, τ) lives among the imaginaries of M. This requires a little work; here are a few words:
 - Elements in the unit ball of the Hilbert space L²(M, τ) can appear inside the operator norm ball of arbitrarily high norm.
 - One needs to consider the countable product of balls of operator norm n for all n in order to see Cauchy sequences wrt the 2-norm.
 - If you are careful, you can quotient this product in order to obtain the unit ball of the given Hilbert space.
- As a bonus, we get that the commutant, *M*', on *L*²(*M*, *τ*) lives as an imaginary definable set in *M*.
- Connes ultraproduct construction is the observation that the standard form of the ultraproduct of II₁ factors is obtained from the imaginaries in the ultraproduct. In particular, $L^2(\mathcal{M}^{\mathcal{U}}, \tau) \neq L^2(\mathcal{M}, \tau)^{\mathcal{U}}!$