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Introduction/History

Traditionally, applications of model theory have come
through the use of first order logic.
Difficulties arise when one wishes to capture the
underlying topology.
The discrete ultraproduct plays a key foundational role via
the theorem of Łoś.
Almost in parallel ultraproducts were being used in places
where the underlying structure was a pointed metric space
- Banach spaces, von Neumann algebras, C*-algebras,
asymptotic cones.
Until recently there was no logical counterpart for this use
of ultraproducts (early attempts by Keisler, Henson).
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Continuous model theory - an example

We wish to consider a tracial von Neumann algebra M as a
logical structure.
The relevant functions are +,×, ∗,0,1 and multiplication by
scalars from C thought of as unary functions.
The trace will be thought of as a relation and we have a
metric arising from the 2-norm ‖x‖2 =

√
tr(xx∗) (here we

use a normalized trace). We will almost never mention it
but to make the general theory go smoothly, relations are
assumed to be real-valued and so trace is really two
relations, tr r and tr i for the real and imaginary part of the
trace.
We also have the operator norm; it plays a subtle role
when considering M as a logical structure.
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Continuous model theory - the operator norm

Suppose that r ≥ 0 and Br is the ball of operator norm ≤ r .
Then

Br is complete with respect to the 2-norm.
For any of our functions, if we restrict the inputs to Br then
that function is uniformly continuous with respect to the
2-norm and there is a uniform bound on the operator norm
of the output.
Trace is uniformly continuous and bounded when restricted
to Br .
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Continuous model theory

A language for continuous model theory consists of a
special symbol d intended as a metric, function symbols
and relation symbols. Function and relation symbols come
endowed with bounds and uniform continuity moduli as
with the example of tracial von Neumann algebras.
A metric structure is an interpretation of the symbols of the
language. In particular, a metric structure is a metric space
(X ,d) where the metric symbol is interpreted as the metric
d together with a scale σ : X → [0,∞) such that for every
r ≥ 0:

σ−1([0, r ]) is complete with respect to d ;
function symbols are interpreted on X so that they are
uniformly continuous wrt d and bounded on σ−1([0, r ]) as
specified by the language;
relation symbols are interpreted on X so that they are also
uniformly continuous wrt d and bounded on σ−1([0, r ]) as
specified by the language.
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Ultraproducts

Fix metric structures Mi for i ∈ I for some language L and
an ultrafilter U on I.
The ultraproduct

∏
i∈I Mi/U is defined via a pre-structure

M ′ which has underlying set

{m̄ : for some B, {i : σi(mi) ≤ B} ∈ U}

The scale σ on the this set is defined by

σ(m̄) = lim
i→U

σ(mi)

Relations are defined similarly (which includes the metric):
for a relation R and m̄1, . . . , m̄n from M ′

R(m̄1, . . . , m̄n) = lim
i→U

RMi (m̄1
i , . . . , m̄

n
i )

Relations are bounded and uniformly continuous with
respect to d because each of the component relations
were required to be by the language.

Bradd Hart BIRS, June 18



logo

Ultraproducts, cont’d

Functions are defined coordinatewise; the demands of
uniform continuity and boundedness again follow from the
specification of the language.
The relation corresponding to the metric is now only a
pseudo-metric on M ′ and the ultraproduct is obtained by
quotienting.
For tracial von Neumann algebras, this construction is the
usual ultraproduct construction. If all of the Mi ’s are the
same metric structure M, we call this an ultrapower and we
write MU .
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Syntax

Terms are formed by composing function symbols and
variables as in first order logic.
If R is an n-ary relation symbol and τ1, . . . , τn are terms
then R(τ1, . . . , τn) is a formula - sometimes called basic
formulas.
If f : Rn → R is a continuous function and ϕ1, . . . , ϕn are
formulas then f (ϕ1, . . . , ϕn) is a formula.
If r ≥ 0 and ϕ is a formula then both supσ(x)≤r ϕ and
infσ(x)≤r ϕ are formulas.
Sentences are formulas with no free variables.
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Syntax, cont’d

Terms and formulas are interpreted in metric structures as you
would expect. The key points are:

Every term is interpreted as a function on the metric
structure which is both bounded and uniformly continuous
when the scale is restricted.
Although we are allowing arbitary continuous functions on
the reals as connectives, inductively, all formulas have a
bounded range and are uniformly continuous when the
scale is restricted.
Because of the previous comment, the interpretation of
sup and inf formulas is well-defined.
Sentences take on real values in a given metric structure.
If M is a metric structure then the theory of M, Th(M) is the
function which assigns to every sentence its value in M or
equivalently the set of sentences which evaluate to 0.
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Syntax and axioms for tracial von Neumann algebras

Terms in the language for tracial von Neumann algebras
are just *-polynomials in many variables.
The only relation is trace and so the only basic formulas
look like tr(p(x̄)) for some *-polynomial p.
Certainly one can write down sentences that express most
of the basic properties of tracial von Neumann algebras:
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Axioms

The axioms for a C-algebra with a compatible involution *;
for example, for all r ≥ 0,

sup
‖x‖≤r

d((xy)∗, y∗x∗)

Axioms expressing properties of the trace; for example,

tr(x + y) = tr(x) + tr(y)

Call this theory Ttr .

We call a theory universal if all of its axioms are of the form
supϕ where ϕ is quantifier-free. Notice that Ttr is universal.

Theorem
Ttr axiomatizes the class of tracial von Neumann algebras.
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Formulas in ultraproducts

Theorem (Łoś Theorem)
Suppose we have metric structures Mi for i ∈ I for some
language L and an ultrafilter U on I. Fix a formula ϕ(x̄) in L
then if M is

∏
i∈I Mi/U we have

ϕM(m̄) = lim
i→U

ϕMi (m̄i)

In particular, if ϕ is a sentence then

ϕM = lim
i→U

ϕMi
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Type spaces

Suppose M is a metric structure and B ⊆ M. If a ∈ MU for
some U then the type p of a over A is the function from all
formulas over B to R such that for a formula ϕ and
parameters b ∈ B,

ϕ(x ,b) 7→ ϕ(a,b)

a is said to realize p, (a |= p).
The set of all types over B whose scale is ≤ r is denoted
Sr (B). If one restricts oneself only to instances of a single
formula ϕ(x , y) then the set of functions is denoted Sr

ϕ(B).
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Metrics on type spaces

There is a metric on Sr (B) defined by

d(p,q) = inf{d(a,b) : a |= p,b |= q in some MU}

We also define a metric on Sr
ϕ(B) by

dϕ(p,q) = supb∈B|ϕ(p,b)− ϕ(q,b)|
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Stability and the order property

Definition
A theory T is stable if for all separable models M of T , all
formulas ϕ(x , y) and all r ≥ 0, Sr

ϕ(M) is separable.

Definition
M has the order property if there is a formula ϕ(x , y) and r < s
such that for every N, there are ci ∈ M for i ≤ N, of bounded
scale such that ϕ(ci , cj) = r if i ≤ j and ϕ(ci , cj) = s if i > j .
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Stability, cont’d

Lemma
If M is a II1 factor then M has the order property.

Proof.

Let x =

(
0
√

2
0 0

)
and let y =

(
0 0√
2 0

)
. Then we have

‖x‖2 = 1 = ‖y‖2. Also [x , y ] =

(
2 0
0 −2

)
and ‖[x , y ]‖2 = 2. For

1 ≤ i ≤ n − 1 let

ai =
i⊗

j=0

x ⊗
n−1⊗

j=i+1

I and bi =
i⊗

j=0

I ⊗ y ⊗
n−1⊗

j=i+2

I

So in M2n , ϕ(x1, y1, x2, y2) = ‖[x1, y2]‖2 orders the aibi ’s.
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Stability, cont’d

Theorem
The following are equivalent for separable metric structures M

Th(M) is stable.
M does not have the order property.
All countable non-principal ultrapowers of M are
necessarily isomorphic.

Theorem
For separable tracial von Neumann algebras M, Th(M) is
stable iff M is type I.

Corollary
(¬ CH) If M is a II1 factor then M has non-isomorphic
ultrapowers.
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Question of McDuff

If M is a separable II1 factor and U,V are non-principal
ultrafilters on N, McDuff asked if M ′ ∩MU is necessarily
isomorphic to M ′ ∩MV .
The following are equivalent for a separable II1 factor M:

For all nonprincipal ultrafilters U and V on N the relative
commutants M ′ ∩MU and M ′ ∩MV are necessarily
isomorphic.
Some (all) relative commutant(s) of M is (are) type I (in fact
are abelian).
Some (all) relative commutant(s) of M are stable.
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Some questions

What are the complete continuous first order theories of II1
factors?
What are the universal theories of II1 factors?
This is equivalent to the CEP!
General fact from model theory that if M and N are metric
structures then Th∀(M) = Th∀(N) iff Th∃(M) = Th∃(N).
As a corollary, CEP is equivalent to the microstate
conjecture.
Even without CEP, Th∀(R) is the maximal universal theory
of II1 factors. General model theory guarantees that there
is a minimal universal theory of II1 factors
If S is any separable model of the minimal universal theory
then it follows that every separable II1 factor embeds into
an ultrapower of S (poor man’s CEP).
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