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Continuous logic; the logic of metric structures

• A metric structure consists of three types of objects:
• S, a collection of bounded, complete metric spaces called sorts,
• F , a collection of uniformly continuous functions on these sorts,

and
• R, a collection of bounded, uniformly continuous functions on the

sorts into R.

• A continuous language L encodes this information:
• There are sorts and sorted variables together with a distinguished

symbol dS for the metric in each sort,
• Function symbols together with uniform continuity moduli, and
• Relation symbols together with uniform continuity moduli and a

bound.

• Atomic formulas are built exactly as in discrete first order logic.
• Connectives: If f : Rn → R and ϕ1, . . . , ϕn are formulas then

f (ϕ1, . . . , ϕn) is a formula.
• Quantifiers: If ϕ is a formula then supx ϕ and infx ϕ are both

formulas.
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Continuous model theory

• Formulas are interpreted in metric structures (L-structures) as
expected. Formulas take values in R, bounded independent of
the L-structure.

• Ultraproducts: For a collection (Xidi ), i ∈ I, of uniformly bounded
metric spaces and an ultrafilter U on I, let X =

∏
I Xi and

d(x̄ , ȳ) = lim
i→U

di (xi , yi )

This is a pseudo-metric on X and we call X/d the metric
ultraproduct of the Xi ’s.

• Ultraproducts of L-structures are obtained by taking the metric
ultraproduct sort by sort, interpreting functions coordinatewise
and defining relations via ultralimits.



Continuous model theory, cont’d

• Łoś Theorem: If Mi , i ∈ I are L-structures, U is an ultrafilter on I
and M =

∏
U Mi then for any formula ϕ

ϕM(m̄) = lim
i→U

ϕMiϕ(m̄i )

• Corollary: The compactness theorem holds for continuous logic.

• If M and N are L-structures and M is a substructure of N the we
say M ≺ N if for all formulas and all m̄ ∈ M, ϕM(m̄) = ϕN(m̄).

• Downward Lowenheim-Skolem: If L is a countable language and
N is an L-structure then there is a separable M such that M ≺ N.

• There is a Lindstrom Theorem for continuous logic so this is the
correct logic for metric structures if you want basic model theory
properties like compactness, DLS, unions of elementary chains,
etc.
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Operator algebra basics

• Fix a Hilbert space H and let B(H) be all bounded linear

operators on H; for A ∈ B(H), ‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

.

• This is the operator norm and induces the norm topology on
B(H).

• A C*-algebra M ⊆ B(H) is a complex *-algebra which is closed in
the norm topology.

• Examples: Mn(C),B(H)

• Finite dimensional C*-algebras are direct sums of Mn(C)’s -
C*-algebras are closed under direct sum.

• C*-algebras are closed under inductive limits: the inductive limits
of Mn(C)’s are the separable UHF algebras; inductive limits of
finite-dimensional algebras are the AF algebras.

• (GNS) There is an abstract characterization of C*-algebras: They
are Banach *-algebras satisfying the C*-identity, ‖a∗a‖ = ‖a‖2.
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A second topology

• The weak *-topology on B(H) is induced by the family of
semi-norms give, for every ζ, η ∈ H,

A 7→ |〈Aζ, η〉|

• M ⊆ B(H) is a von Neumann algebra if it is a unital *-algebra
closed in the weak *-topology.

• Equivalently, any unital *-algebra M ⊆ B(H) which satisfies
M ′′ = M is a von Neumann algebra;
M ′ = {A ∈ B(H) : [A,B] = 0 for all B ∈ M}.

• We can’t work with all von Neumann algebras in continuous logic
- this is the first open problem: fix this! Find a model theoretic
setting which captures the class of all von Neumann algebras.

• Traces: A linear functional τ on a C*-algebra M is a trace if it is
positive (τ(a∗a) ≥ 0 for all a ∈ M), τ(a∗a) = τ(aa∗) for all a ∈ M
and τ(1) = 1. We say it is faithful if τ(a∗a) = 0 implies a = 0.
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Tracial von Neumann algebras

• A tracial von Neumann algebra M is a von Neumann algebra with
a faithful trace τ . τ induces a norm on M

‖a‖2 =
√
τ(a∗a)

• Examples: Mn(C) with the normalized trace; not B(H)

• Direct sums of tracial von Neumann algebras
• Inductive limits of tracial von Neumann algebras. In particular, R,

the hyperfinite II1 factor is the inductive limit of the Mn(C)’s.
• L(Fn) - suppose H has an orthonormal generating set ζh for

h ∈ Fn. Let ug for g ∈ Fn be the operator determined by

ug(ζh) = ζgh

L(Fn) is the von Neumann algebra generated by the ug ’s. It is
tracial: for a ∈ L(Fn), let τ(a) = 〈a(ζe), ζe〉.



Tracial von Neumann algebras

• A tracial von Neumann algebra M is a von Neumann algebra with
a faithful trace τ . τ induces a norm on M

‖a‖2 =
√
τ(a∗a)

• Examples: Mn(C) with the normalized trace; not B(H)

• Direct sums of tracial von Neumann algebras
• Inductive limits of tracial von Neumann algebras. In particular, R,

the hyperfinite II1 factor is the inductive limit of the Mn(C)’s.

• L(Fn) - suppose H has an orthonormal generating set ζh for
h ∈ Fn. Let ug for g ∈ Fn be the operator determined by

ug(ζh) = ζgh

L(Fn) is the von Neumann algebra generated by the ug ’s. It is
tracial: for a ∈ L(Fn), let τ(a) = 〈a(ζe), ζe〉.



Tracial von Neumann algebras

• A tracial von Neumann algebra M is a von Neumann algebra with
a faithful trace τ . τ induces a norm on M

‖a‖2 =
√
τ(a∗a)

• Examples: Mn(C) with the normalized trace; not B(H)

• Direct sums of tracial von Neumann algebras
• Inductive limits of tracial von Neumann algebras. In particular, R,

the hyperfinite II1 factor is the inductive limit of the Mn(C)’s.
• L(Fn) - suppose H has an orthonormal generating set ζh for

h ∈ Fn. Let ug for g ∈ Fn be the operator determined by

ug(ζh) = ζgh

L(Fn) is the von Neumann algebra generated by the ug ’s. It is
tracial: for a ∈ L(Fn), let τ(a) = 〈a(ζe), ζe〉.



Operator algebras as metric structures

• For a C*-algebra or a tracial von Neumann algebra M, consider
sorts Sn for each n ∈ N, for the ball of operator norm n in M.

• Functions like +, ·, ∗ and scalar multiplication are broken up
across these sorts - there are also inclusion maps to keep
everything straight.

• The metrics: in the case of C*-algebras, the metric on each ball
is just the one determined by the operator norm; in the case of
tracial von Neumann algebra, the metric is induced by the
2-norm.

Theorem (Farah-H.-Sherman)

• The class of C*-algebras forms an elementary class.
• The class of tracial von Neumann algebras forms an elementary

class



Operator algebras as metric structures

• For a C*-algebra or a tracial von Neumann algebra M, consider
sorts Sn for each n ∈ N, for the ball of operator norm n in M.

• Functions like +, ·, ∗ and scalar multiplication are broken up
across these sorts - there are also inclusion maps to keep
everything straight.

• The metrics: in the case of C*-algebras, the metric on each ball
is just the one determined by the operator norm; in the case of
tracial von Neumann algebra, the metric is induced by the
2-norm.

Theorem (Farah-H.-Sherman)

• The class of C*-algebras forms an elementary class.
• The class of tracial von Neumann algebras forms an elementary

class



Some consequences of this model theory

• The standard construction of the ultraproduct of C*-algebras is
the same as taking the ultraproduct as metric structures.

• Tracial ultraproducts of von Neumann algebras, introduced by
McDuff, are also equivalent to the ultraproduct in the metric
structure sense for tracial von Neumann algebras.

•
∏

U Mn(C) is a C*-algebra;
∏

U Mn(C) is also a tracial von
Neumann algebra albeit with a different metric.

• A von Neumann algebra whose centre is C is called a factor -
this can be expressed as a sentence in continuous logic. To say
that a tracial von Neumann algebra is type II1 just means that it
has a projection with irrational trace which can also be expressed
in continuous logic.

• R is a II1 factor and so is RU ;
∏

U Mn(C) is also a II1 factor; L(Fn)
is also a II1 factor.



Property Γ

• Consider M any II1 factor and the partial type
p(x) = {[x ,m] = 0 : m ∈ M}. We ask: is this type algebraic?

• (JvN) M has property Γ if p is not algebraic. Property Γ is
elementary by its definition.

•
∏

U Mn(C) does not have property Γ; neither does L(Fn).
• Consider M ≺ MU and all realizations of p in MU - it is M ′ ∩MU ,

the relative commutant - it is also a von Neumann algebra.
• There are three cases (McDuff):

• M does not have property Γ,
• M has property Γ and the relative commutant is abelian (and does

not depend on U), or
• M has a non-abelian relative commutant (it is type II1).

• McDuff asked if in the third case, the isomorphism type depends
on U. We (Farah, H., Sherman) answered yes because the
theory of II1 factors is unstable!
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Consequences

• We know three distinct elementary classes of II1 factors
• the theories of

∏
U Mn(C), L(Fn),

• classical examples with property Γ and abelian relative commutant
(Dixmier-Lance), and

• the theory of R.

• Questions:
• Are all II1 factors without property Γ elementarily equivalent?
• Does the theory of

∏
U Mn(C) depend on U?

• Is L(Fn) ≡
∏

U Mn(C)?
• Is there a role for free probability to answer any of these questions?
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The theory of R

• R is the atomic model of its theory; any embedding of it into any
other model of its theory is automatically elementary.

• Th(R) is not model complete; in particular, it does not have
quantifier elimination (FGHS;GHS).

• A question logicians must ask: is the theory of R decidable?

• What does this mean for a continuous theory? Is there an
algorithm such that given a sentence ϕ and ε > 0, we can
compute ϕR to within ε.

• By Ben Ya’acov-Pedersen, the answer is yes if there is a
recursive axiomatization of Th(R).

• Do we know such an axiomatization? No!
• We do have a recursive axiomatization of all tracial von

Neumann algebras - this is a universal class so what do we know
about Th∀(R)? Is it decidable?



The theory of R

• R is the atomic model of its theory; any embedding of it into any
other model of its theory is automatically elementary.

• Th(R) is not model complete; in particular, it does not have
quantifier elimination (FGHS;GHS).

• A question logicians must ask: is the theory of R decidable?
• What does this mean for a continuous theory? Is there an

algorithm such that given a sentence ϕ and ε > 0, we can
compute ϕR to within ε.

• By Ben Ya’acov-Pedersen, the answer is yes if there is a
recursive axiomatization of Th(R).

• Do we know such an axiomatization?

No!
• We do have a recursive axiomatization of all tracial von

Neumann algebras - this is a universal class so what do we know
about Th∀(R)? Is it decidable?



The theory of R

• R is the atomic model of its theory; any embedding of it into any
other model of its theory is automatically elementary.

• Th(R) is not model complete; in particular, it does not have
quantifier elimination (FGHS;GHS).

• A question logicians must ask: is the theory of R decidable?
• What does this mean for a continuous theory? Is there an

algorithm such that given a sentence ϕ and ε > 0, we can
compute ϕR to within ε.

• By Ben Ya’acov-Pedersen, the answer is yes if there is a
recursive axiomatization of Th(R).

• Do we know such an axiomatization? No!
• We do have a recursive axiomatization of all tracial von

Neumann algebras - this is a universal class so what do we know
about Th∀(R)? Is it decidable?



A little background

• If A is any separable II1 tracial von Neumann algebra then
R ↪→ A;

• If A ≡∀ R then A ↪→ RU .
• Equivalently, if A ↪→ RU then Th∀(A) = Th∀(R).
• So if all separable II1 tracial von Neumann algebras embed into
RU then Th∀(R) is decidable.

• Problem: the assumption is the Connes Embedding Problem!
• In fact, it is equivalent to the decidability of Th∀(R) (Goldbring-H.)
• To me, this says that this problem is very hard or that Th(R) is

undecidable (or both).
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Nuclear algebras

• A linear map ϕ : A→ B is positive if ϕ(a∗a) ≥ 0 for all a ∈ A
(positive elements go to positive elements).

• ϕ is completely positive if for all n, ϕ(n) : Mn(A)→ Mn(B) is
positive.

• ϕ is contractive if ‖ϕ‖ ≤ 1; *-homomorphisms are cpc maps.

Definition
A C*-algebra A is nuclear if for every ā ∈ A and ε > 0 there is an n
and cpc maps ϕ : A→ Mn(C) and ψ : Mn(C)→ A such that
‖ā− ψϕ(ā))‖ < ε.

• Examples: Abelian C*-algebras, Mn(C)

• Inductive limits of nuclear algebras; nuclear algebras are closed
under ⊗ and direct sum so AF and UHF algebras are nuclear.
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The classification programme for
separable nuclear algebras

The general problem
The general classification problem is to give a good classification
scheme for all (unital), separable, simple nuclear algebras.

• Elliott classified all separable AF algebras and provided a
template for classifying many more classes of nuclear algebras.

• This programme isn’t arbitrary or crazy - see Winter’s diagram.

The Elliott conjecture
Any separable, unital, simple nuclear algebra is determined, up to
isomorphism, by its Elliott invariant.



The Elliott invariant
• Consider the equivalence relation ∼ on projections in A given by

p ∼ q iff there is some v ∈ A, vpv∗ = q and v∗qv = p.
• The *-homomorphism Φn : Mn(A)→ Mn+1(A) defined by

a 7→
(

a 0
0 0

)
and let M∞ = limn Mn(A).

• Let V (A) = Proj(M∞(A))/∼.
• V (A) has an additive structure defined as follows: if p,q ∈ V (A)

then p ⊕ q is
(

p 0
0 q

)
• K0(A) is the Grothendieck group generated from (V (A),⊕) and

K+
0 (A) is the image of V (A) in K0(A); if A is unital then the

constant [1A] corresponds to the identity in A.
• The Elliott invariant is

Ell(A) = ((K0(A),K+
0 (A), [1A]),K1(A),Tr(A), ρA) where:

• K1(A) = K0(C0((0,1),A)), Tr(A) is the set of traces on A and ρA
is the natural pairing of Tr(A) and K0(A).



Why might model theory be involved?

Toms counter-examples
The Elliott conjecture is false. Toms constructed non-isomorphic
separable unital simple C*-algebras with the same Elliott invariant.

Problem
These algebras are not elementarily equivalent. In fact, all known
counter-examples are distinguished by their theories (FHLRTVW).

Question/conjecture
Separable, unital, simple C*-algebras are determined by their Elliott
invariant and their theory.

• The isomorphism problem for AF algebras is not smooth in terms
of Borel equivalence.

• The continuous theory of a metric structure is a smooth invariant.
• Conclusion (CCFGHMSS): there must be two elementarily

equivalent AF algebras which are not isomorphic - name two!
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How might model theory be involved?

• We know how to build models in ways different from operator
algebraists: Henkin constructions and Fraı̈ssé classes.

• They build up from the bottom via algebraic operations to form
bootstrap classes.

• A test case for Henkin constructions is whether one can capture
the notion of nuclearity via a Henkin construction.

Theorem (FHLRTVW)
In the language of C*-algebras, there are countably many partial
types such that a C*-algebra omits these types iff it is nuclear.
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Sketch of a proof

• Fix k ,n ∈ N and define a relation Rn(ā) for ā ∈ Ak
1 by

infϕ,ψ‖ā− ψϕ(ā)‖

where ϕ : A→ Mn(C) and ψ : Mn(C)→ A are cpc maps.
• It is possible to prove that if A =

∏
U Ai then

RA
n = lim

i→U
RAi

n

• This means that the class of structures (A,RA
n ) is a conservative

extenstion of the class C*-algebras.
• Hence, by Beth definability, Rn is equivalent to a formula in the

language of C*-algebras.
• Omit the types, pm(x̄) = {Rn(x̄) ≥ 1/m : n ∈ N} for all k -tuples x̄ .


