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Langlands program

Langland’s made a series of sweeping and inter-related
conjectures in the late 60’s regarding the connection
between number theory, representation theory and
automorphic forms.

Let’s start with some modern class field theory.
E. Frenkel, Recent advances in the Langland’s program,
Bull. AMS, 2004
Langland conjectured, among other things, that for a
number field F , there was a relationship, a specific
correspondence, between n-dimensional Galois
representations of F and automorphic representations of
GLn(AF ).
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The fundamental lemma

It’s not even wrong!

W. Casselman, introductory notes on the fundamental
lemma given in a web-based seminar series in 2007.
T. Hales, A statement of the fundamental lemma, posted
on the ArXiv, 2003.
Ngô Bao Châu, Le Lemme Fondamental Pour Les
Algèbres De Lie, ArXiv, May, 2008.
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Suppose G to be an unramified reductive group defined over
a p-adic field k, H an unramified endoscopic group of G. The
two have the same rank.

Given a strongly regular semi-simple element t of H , let Tt

be its centalizer in H , a maximal torus. There exists a special
embedding of Tt in G. The element t gives rise to an element
tG of G, which we assume to be strongly regular in G.

Define orbital integrals of a locally constant function of co m-
pact support on any reductive group—for any strongly regula r
t let

Λ(f, t) =
(∏

ΣG

∣∣α(t) − 1
∣∣1/2

)∣∣∣∣
vol T (o)

vol G(o)

∣∣∣∣
∫

CG(t)\G

f(g−1tg)
dg

dt
.
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Λ(f, t) =
(∏

ΣG

∣∣α(t) − 1
∣∣1/2

)∣∣∣∣
vol T (o)

vol G(o)

∣∣∣∣
∫

CG(t)\G

f(g−1tg)
dg

dt
.

The ratio of volumes is to eliminate the effect of choice of
measures on G and T .

Orbital integrals have something to with fixed-points, sinc e
CG(t) is the set of points on G fixed under conjugation by t.
We shall see that this connection extends to something very
deep. The product is over roots α with respect to T . Such
factors are familiar in fixed point formulas.
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The data determining H have something to do a set of ele-
ments s in the torus T̂ in the L-group LG. They all give rise
to the same map κ from the stable conjugacy class of tG,
constant on the ordinary conjugacy classes. The κ-orbital
integrals are linear combinations of the ordnary orbital in te-
grals:

Λκ
G,H(f, t) =

∑

t′∼t

κ(t′)ΛG(f, t′) .

If κ ≡ 1 this is the stable sum Λst
G(f, t).

Stable conjugacy means conjugacy in the algebrac closure.
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Any element f of the Hecke algebra H
(
G//G(o)

)
gives rise

to an fH in H(H//H(o)
)
.

Fundamental Lemma :

Λκ
G/H(f, tG) = Λst

H(fH , t)

for all strongly G-regular semi-simple elements t of H .

Very roughly, this says that analysis on G invariant under
conjugation can be reduced to stable analysis on G and all
its endoscopic groups.

Implicit in this are assertions about character sums in G match-
ing stable character sums in H .

7



A STATEMENT OF THE FUNDAMENTAL LEMMA 9

In this way, each cocycle aτ gives a complex constant κ(aτ ) ∈ C×.

Example 5.5. The element s ∈ C× giving the endoscopic group H = UE(1)
of SL(2) is s = −1, which may be identified with the character n 7→ (−1)n

of Z. This gives the nontrivial character κ of

H1(Gal(F̄ /F ), UE(1)) ∼= Z/2Z.

6. Statement of the Fundamental Lemma

6.1. Context. Let G be an unramified connected reductive group over F .
Let H be an unramified endoscopic group of G. Let γ ∈ H(F ) be a strongly
regular semisimple element. Let TH = CH(γ), and let TG be a Cartan
subgroup of G that is isomorphic to it. More details will be given below
about how to choose TG. The choice of TG matters! Let γ ∈ TH(F ) map to
γ0 ∈ TG(F ) under this isomorphism.

By construction, γ0 is semisimple. However, as G may have more roots
than H, it is possible for γ0 to be singular, even when γ is strongly regular.
If γ ∈ H(F ) is a strongly regular semisimple element with the property that
γ0 is also strongly regular, then we will call γ a strongly G-regular element
of H(F ).

If γ′ is stably conjugate to γ0 with cocycle aτ , then s ∈ Hom(X∗, C
×)

gives κ(aτ ) ∈ C×.
Let KG and KH be hyperspecial maximal compact subgroups of G and

H. Let χG,K and χH,K be the characteristic functions of these hyperspecial
subgroups. Set
(6.0.1)

ΛG,H(γ) =




∏

α∈ΦG

|α(γ0) − 1|1/2




[
vol(KT , dt)

vol(K,dg)

] ∑

γ′∼γ0

κ(aτ )

∫

CG(γ′,F )\G(F )
χG,K(g−1γ′g)

dg

dt′
.

The set of roots ΦG are taken to be those relative to TG. The sum runs over
all stable conjugates γ′ of γ0, up to conjugacy. This is a finite sum. The
group KT is defined to be the maximal compact subgroup of TG. Equation
6.0.1 is a finite linear combination of orbital integrals (that is, integrals over
conjugacy classes in the group with respect to an invariant measure). The
Haar measures dt′ on CG(γ′, F ) and dt on TG(F ) are chosen so that stable
conjugacy between the two groups is measure preserving. This particular
linear combination of integrals is called a κ-orbital integral because of the
term κ(aτ ) that gives the coefficients of the linear combination. Note that
the integration takes place in the group G, and yet the parameter γ is an
element of H(F ).

The volume terms vol(K,dg) and vol(KT , dt) serve no purpose other than
to make the entire expression independent of the choice of Haar measures
dg and dt, which are only defined up to a scalar multiple.
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We can form an analogous linear combination of orbital integrals on the
group H. Set
(6.0.2)

Λst
H(γ) =




∏

α∈ΦH

|α(γ) − 1|1/2




[

vol(KT , dt)

vol(KH , dh)

] ∑

γ′∼γ

∫

CH(γ′,F )\H(F )
χH,K(h−1γ′h)

dh

dt′
.

This linear combination of integrals is like ΛG,H(γ), except that H replaces
G, KH replaces KG, ΦH (taken relative to TH) replaces ΦG, and so forth.
Also, the factor κ(aτ ) has been dropped. The linear combination of Equa-
tion 6.0.2 is called a stable orbital integral, because it extends over all stable
conjugates of the element γ without the factor κ. The superscript st in the
notation is for ‘stable.’

Conjecture 6.1. (The fundamental lemma) For every γ ∈ H(F ) that is
strongly G-regular semisimple,

ΛG,H(γ) = Λst
H(γ).

Remark 6.2. There have been serious efforts over the past twenty years to
prove the fundamental lemma. These efforts have not yet led to a proof.
Thus, the fundamental lemma is not a lemma; it is a conjecture with a
misleading name. Its name leads one to speculate that the authors of the
conjecture may have severely underestimated the difficulty of the conjecture.

Remark 6.3. Special cases of the fundamental lemma have been proved. The
case G = SL(n) was proved by Waldspurger [28]. Building on the work of
[5], Laumon has proved that the fundamental lemma for G = U(n) follows
from a purity conjecture [21]. The fundamental lemma has not been proved
for any other general families of groups. The fundamental lemma has been
proved for some groups G of small rank, such as SU(3) and Sp(4). See [2],
[7], [10].

6.2. The significance of the fundamental lemma. The Langlands pro-
gram predicts correspondences π ↔ π′ between the representation theory of
different reductive groups. There is a local program for the representation
theory of reductive groups over locally compact fields, and a global program
for automorphic representations of reductive groups over the adele rings of
global fields.

The Arthur-Selberg trace formula has emerged as a powerful tool in the
Langlands program. In crude terms, one side of the trace formula contains
terms related to the characters of automorphic representations. The other
side contains terms such as orbital integrals. Thanks to the trace formula,
identities between orbital integrals on different groups imply identities be-
tween the representations of the two groups.

It is possible to work backwards: from an analysis of the terms in the
trace formula and a precise conjecture in representation theory, it is possible
to make precise conjectures about identities of orbital integrals. The most
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basic identity that appears in this way is the fundamental lemma, articulated
above.

The proofs of many major theorems in automorphic representation theory
depend in one way or another on the proof of a fundamental lemma. For
example, the proof of Fermat’s Last Theorem depends on Base Change for
GL(2), which in turn depends on the fundamental lemma for cyclic base
change [17]. The proof of the local Langlands conjecture for GL(n) depends
on automorphic induction, which in turn depends on the fundamental lemma
for SL(n) [11], [12], [28]. Properties of the zeta function of Picard modular
varieties depend on the fundamental lemma for U(3) [26], [2]. Normally,
the dependence of a major theorem on a particular lemma would not be
noteworthy. It is only because the fundamental lemma has not been proved
in general, and because the lack of proof has become a serious impediment to
progress in the field, that the conjecture has become the subject of increased
scrutiny.

7. Reductions

To give a trivial example of the fundamental lemma, if γ and γ0 and their
stable conjugates are not in any compact subgroup, then

χG,K(g−1γ′g) = 0 and χH,K(h−1γ′h) = 0

so that both ΛG,H(γ) and Λst
H(γ) are zero. Thus, the fundamental lemma

holds for trivial reasons for such γ.

7.1. Topological Jordan decomposition. A somewhat less trivial reduc-
tion of the problem is provided by the topological Jordan decomposition.
Suppose that γ lies in a compact subgroup. It can be written uniquely as a
product

γ = γsγu = γuγs,

where γs has finite order, of order prime to the residue field characteristic
p, and γu is topologically unipotent. That is,

lim
n→∞

γpn

u = 1.

The limit is with respect to the p-adic topology. A special case of the
topological Jordan decomposition γ ∈ O×

F ⊂ Gm(F ) is treated in [13, p20].
In that case, γs is defined by the formula

γs = lim
n→∞

γqn

.

Let γ, γ0, and γ′ be chosen as in Section 6.1. Each of these elements has
a topological Jordan decomposition. Let Gs = CG(γ0s) and Hs = CH(γs).
It turns out that Gs is an unramified reductive group with unramified en-
doscopic group Hs. Descent for orbital integrals gives the formulas [20] [8]

ΛG,H(γ) = ΛGs,Hs
(γu)

Λst
H(γ) = Λst

Hs
(γu).
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8 LE LEMME FONDAMENTAL POUR LES

ALGÈBRES DE LIE

par

Ngô Bao Châu

Introduction

Dans cet article, nous proposons une démonstration pour des conjec-
tures de Langlands, Shelstad et Waldspurger plus connues sous le nom
de lemme fondamental pour les algèbres de Lie et lemme fondamental
non standard. On se reporte à 1.11.1 et à 1.12.7 pour plus de précisions
dans les énoncés suivants.

Théorème 1. — Soient k un corps fini à q éléments, O un anneau de

valuation discrète complet de corps résiduel k et F son corps des frac-

tions. Soit G un schéma en groupes réductifs au-dessus de O dont l’ordre

du groupe de Weyl n’est pas divisible par la caractéristique de k. Soient

(κ, ρκ) une donnée endoscopique de G au-dessus de O et H le schéma en

groupes endoscopiques associé.

On a l’égalité entre la κ-intégrale orbitale et l’intégrale orbitale stable

∆G(a)Oκ
a(1g, dt) = ∆H(aH)SOaH (1h, dt)

associées aux classes de conjugaison stable semi-simples régulières a et

ah de g(F ) et h(F ) qui se correspondent, aux fonctions caractéristiques

1g et 1h des compacts g(O) et h(O) dans g(F ) et h(F ) et où on a noté

∆G(a) = q−val(DG(a))/2 et ∆H(aH) = q−val(DH(aH ))/2

DG et DH étant les fonctions discriminant de G et de H.

http://arXiv.org/abs/0801.0446v3
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Théorème 2. — Soient G1, G2 deux schémas en groupes réductifs sur

O ayant des données radicielles isogènes dont l’ordre du groupe de Weyl

n’est pas divisible par la caractéristique de k. Alors, on a l’égalité suivante

entre les intégrales orbitales stables

SOa1(1g1 , dt) = SOa2(1g2, dt)

associées aux classes de conjugaison stable semi-simples régulières a1

et a2 de g1(F ) et g2(F ) qui se correspondent et aux fonctions ca-

ractéristiques 1g1 et 1g2 des compacts g1(O) et g2(O) dans g1(F ) et

g2(F ).

Nous démontrons ces théorèmes dans le cas d’égale caractéristique.
D’après Waldspurger, le cas d’inégales caractéristiques s’en déduit cf.

[78].
Les applications principales du lemme fondamental se trouvent dans

la réalisation de certains cas particuliers du principe de fonctorialité de
Langlands via la comparaison de formules des traces et dans la construc-
tion de représentations galoisiennes attachées aux formes automorphes
par le biais du calcul de cohomologie des variétés de Shimura. On se
réfère aux travaux d’Arthur [2] pour les applications à la comparaison
de formules des traces et à l’article de Kottwitz [42] ainsi qu’au livre en
préparation édité par Harris pour les applications aux variétés de Shi-
mura.

Cas connus et réductions. — Le lemme fondamental a été établi dans
un grand nombre de cas particuliers. Son analogue archimédien a été
entièrement résolu par Shelstad dans [67]. Ce cas a incité Langlands et
Shelstad à formuler leur conjecture pour un corps non-archimédien. Le
cas du groupe SL(2) a été traité par Labesse et Langlands dans [46].
Le cas du groupe unitaire à trois variables a été résolu par Rogawski
dans [62]. Les cas assimilés aux Sp(4) et GL(4) tordu ont été résolus par
Hales, Schröder et Weissauer par des calculs explicites cf. [30], [64] et
[81]. Récemment, Whitehouse a poursuivi ces calculs pour démontrer le
lemme fondamental pondéré tordu dans ce cas cf. [80].

Le lemme fondamental pour le changement de base stable a été établi
par Clozel [12] et Labesse [45] à partir du cas de l’unité de l’algèbre de
Hecke démontré par Kottwitz [40]. Auparavant, le cas GL(2) a été établi
par Langlands [47] et le cas GL(3) par Kottwitz [36].

Un autre cas important est le cas SL(n) résolu par Waldspurger dans
[75]. Le cas SL(3) avec un tore elliptique a été établi auparavant par
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integers O for some number field k which is sometimes
written LO.

Three sorted: a valued field sort in the language of rings
with constants for O[[t ]],
a residue field with constants for O and
a value group sort.
Additionally, there are two functions, ac, the angular
component, from the valued field to the residue field, and
ord , the order, from the valued field sort to the residue field.
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extends O and the value field extends O[[t ]] “canonically”,
one has uniform quantifier simplification and specifically a
“cell decomposition” which is suitable for creating a
measure.
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Finite sums
Integration

For each N > 0 and for each group homomorphism

ψ : Z/NZ→ C×

to the complex unit circle,

consider the sum

Sψ,N,ϕ,f :=
∑

x∈ϕ(Z/NZ)

ψ(f (x)),

with f a definable function in the ring language.

How do these finite sums Sψ,N,ϕ,f vary with N > 0,

and how do they vary in definable families?

Raf Cluckers Course on Motivic Integration
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For each N > 0 and for each group homomorphism

χ : (Z/NZ)× → C×

to the complex unit circle,

considering similar sums Sχ,N,ϕ,f , one

can raise the same questions.

Still more generally,
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ψ(f (x))χ(g(x)),

with similar questions.

Raf Cluckers Course on Motivic Integration



6/22

Finite sums
Integration

For each N > 0 and for each group homomorphism

χ : (Z/NZ)× → C×

to the complex unit circle, considering similar sums Sχ,N,ϕ,f ,

one

can raise the same questions.

Still more generally,

Sψ,χ,N,ϕ,f ,g :=
∑

x∈ϕ(Z/NZ)

ψ(f (x))χ(g(x)),

with similar questions.

Raf Cluckers Course on Motivic Integration



6/22

Finite sums
Integration

For each N > 0 and for each group homomorphism

χ : (Z/NZ)× → C×

to the complex unit circle, considering similar sums Sχ,N,ϕ,f , one

can raise the same questions.

Still more generally,

Sψ,χ,N,ϕ,f ,g :=
∑

x∈ϕ(Z/NZ)

ψ(f (x))χ(g(x)),

with similar questions.

Raf Cluckers Course on Motivic Integration



6/22

Finite sums
Integration

For each N > 0 and for each group homomorphism

χ : (Z/NZ)× → C×

to the complex unit circle, considering similar sums Sχ,N,ϕ,f , one

can raise the same questions.

Still more generally,

Sψ,χ,N,ϕ,f ,g :=
∑

x∈ϕ(Z/NZ)

ψ(f (x))χ(g(x)),

with similar questions.

Raf Cluckers Course on Motivic Integration



8/22

Finite sums
Integration

One of the quests of Motivic Integration can be described as

the

search for a as wide as possible class of formulas ϕ and definable

functions f , g , so that for as many as possible numbers N > 0 and

choices of the characters ϕ, χ, the dependence of Sψ,χ,N,ϕ,f ,g on N

(or of similar even more general objects) (and the dependence in

definable families) can be understood in terms of as few as possible

”basic objects” of a similar kind Sψ,χ,N,ϕ,f ,g ,

where ”basic” often means that N is only allowed to be a prime
number,

or even better: in terms of an abstract, “basic” geometric object.
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Finite sums
Integration

Of course one can start with any ring of integers O in any number
field (instead of with Z)

and consider finite quotients O/I instead of Z/NZ.

This quest of Motivic Integration tries to be as uniform as possible
in number fields as well.
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Finite sums
Integration

From finite sums to integration on local fields

Henselian local fields are:

Fq((t))

and finite field extensions of

Qp,

the p-adic completion of Q for the norm |p`a/b|p = p−`, ` ∈ Z.
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Finite sums
Integration

Back to (definable) integration

Let ψ : Qp → C× be an additive character

which is trivial on pZp and nontrivial on Zp.

For a ∈ Zp let χa : Q×p → C× be a multiplicative character to the
complex unit circle,

which is trivial on 1 + paZp and nontrivial on 1 + aZp.
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Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



17/22

Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



17/22

Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



17/22

Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}

ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



17/22

Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



17/22

Finite sums
Integration

Let ϕ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f , g be definable functions.

Then, for any such data, one can consider the integral

Iψ,χ,Qp ,ϕ,f ,g (a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.

ψ can vary, as well as χa, a, and Qp.

Raf Cluckers Course on Motivic Integration



18/22

Finite sums
Integration

Iψ,χ,Qp ,ϕ,f ,g ,h(a) :=

∫
{x∈Qn

p |ϕ(x)}
ψ(f (x))χa(g(x))|dx |,

How does I(·) depend on ψ, χa, and a?

More importantly, how does it depend on Qp?

How does it vary in definable families?
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Finite sums
Integration

The char p analogue

Likewise,
Let ψ : Fp((t))→ C× be an additive character
which is trivial on pFp[[t]] and nontrivial on Fp[[t]].

For a ∈ Fp[[t]] let χa : Fp((t))× → C× be a multiplicative
character to the complex unit circle,
which is trivial on 1 + taFp[[t]] and nontrivial on 1 + aFp[[t]].

Then, for any such data, one can consider the integral

Iψ,χ,Fp((t)),ϕ,f ,g ,h(a) :=

∫
{x∈Fp((t))n|ϕ(x)}

ψ(f (x))χa(g(x))|dx |,

if it is absolutely integrable.
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Finite sums
Integration

Same questions:
how does it depend on Fp((t)) and how does it vary in definable
families?

New question:
How does I(·) depend on the characteristic?
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Finite sums
Integration

The quest of Motivic Integration can be re-described as

the search

for a as wide as possible class of formulas ϕ and definable

functions f , g , so that for as many as possible local fields K

choices of the characters ϕ, χ, the dependence of Iψ,χ,K ,ϕ,f ,g on

the data (or of similar even more general objects) (and the

dependence in definable families) can be understood in terms of as

few as possible ”basic objects” of the kind Sψ,χ,Fq ,ϕ,f ,g ,

with S(·) as before, and Fq the residue field of K ,

or even better: in terms of abstract, “basic” geometric objects.
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Cluckers - Loeser approach
Hrushovski - Kazhdan approach

Common features

In terms of these basic objects or of (◦◦◦), the theory understands
the integrals

Iϕ,K :=

∫
{x∈Kn|ϕ(x)}

ψ(f )|dx |,

when K varies over Henselian local fields of big enough residual
characteristic.
And similarly in definable families using any kinds and any number
of parameters and quantifiers!

However, by the very nature of ψ, which has a different range
(image) when the local field varies (not only depending on the
residue field), this integral does not only depend on the residue
field,
and thus, a naive version of the transfer principle makes no sense.

Raf Cluckers Course on Motivic Integration III
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Cluckers - Loeser approach
Hrushovski - Kazhdan approach

Common features

The Cluckers - Loeser generalisation of the transfer
principle

Theorem (Rough version)

Let ϕi , fi be Denef - Pas definable for i = 1, 2 (possibly living in a
definable family, that is, depending on parameters).
Then for any Henselian local field K with big enough residual
characteristic,
whether for each choice of ψ the equality

Iψ,K ,ϕ1,f1 = Iψ,K ,ϕ2,f2

holds, only depends on the residue field of K.
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Cluckers - Loeser approach
Hrushovski - Kazhdan approach

Common features

The Cluckers - Loeser generalisation of the transfer
principle

This transfer principle (with parameter dependence and with ψ) is
very promising for applications in the Langlands program and
representation theory.
The application to several variants of the Fundamental Lemma has
been worked out recently (see C. - Hales - Loeser) and to aspects
of representation theory by Gordon and Cunningham.

Raf Cluckers Course on Motivic Integration III
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h[1, 0, 0]. We denote byf : Z → Y the morphism induced by projection. Then
[1Z] is S-integrable if and only ifL(ordjacf )◦ f −1

is, and thenf!([1Z]) = L(ordjacf )◦ f −1
.

Once Theorem 2.5.1 is proved, one may proceed as follows to extend the con-
structions fromC+ to C. One defines ISC(Z) as the subgroup ofC(Z) generated by
the image of ISC+(Z). One shows that iff : Z → Y is a morphism in DefS, the
morphism f! : ISC+(Z)→ ISC+(Y) has a natural extension

(2.5.3) f! : ISC(Z)→ ISC(Y).

The proof of Theorem 2.5.1 is quite long and involved. In a nutshell, the basic
idea is the following. Integration along residue field variables is controlled by (A5)
and integration alongZ-variables by (A6). Integration along valued field variables
is constructed one variable after the other. To integrate with respect to one valued
field variable, one may, using (a variant of) the cell decomposition Theorem 2.2.1
(at the cost of introducing additional new residue field andZ-variables), reduce to
the case of cells which is covered by (A7) and (A8). An important step is to show
that this is independent of the choice of a cell decomposition. When one integrates
with respect to more than one valued field variable (one afterthe other) it is crucial
to show that it is independent of the order of the variables, for which we use a
notion of bicells.

2.6. Motivic measure. The relation of Theorem 2.5.1 with motivic integration is
the following. WhenS is equal toh[0, 0, 0], the final object of Defk, one writes
IC+(Z) for ISC+(Z) and we shall say integrable forS-integrable, and similarly for
C. Note that IC+(h[0, 0, 0]) = C+(h[0, 0, 0]) = S K0(RDefk) ⊗N[L−1] A+ and that
IC(h[0, 0, 0]) = K0(RDefk) ⊗Z[L] A. Forϕ in IC+(Z), or in IC(Z), one defines the
motivic integralµ(ϕ) by µ(ϕ) = f!(ϕ) with f the morphismZ→ h[0, 0, 0].

Let X be in Defk of dimensiond. Letϕ be a function inC+(X), or in C (X). We
shall sayϕ is integrable if its class [ϕ]d in Cd

+(X), resp. inCd(X), is integrable, and
we shall set

µ(ϕ) =
∫

X
ϕ dµ = µ([ϕ]d).

Using the following Change of Variables Theorem 2.6.1, one may develop the
integration on global (non affine) objects endowed with a differential form of top
degree (similarly as in thep-adic case), cf. [7].

Theorem 2.6.1(Cluckers-Loeser [7]). Let f : Y→ X be an isomorphism inDefk.
For any integrable functionϕ in C+(X) or C (X),

∫

X
ϕdµ =

∫

Y
L−ord jac(f ) f ∗(ϕ)dµ.

Also, the construction we outlined of the motivic measure carries over almost
literally to a relative setting: one can develop a relative theory of motivic integra-
tion: integrals depending on parameters of functions inC+ or C still belong toC+

or C as functions of these parameters.
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More specifically, if f : X → Λ is a morphism andϕ is a function inC+(X) or
C (X) that is relatively integrable (a notion defined in [7]), oneconstructs in [7] a
function

(2.6.1) µΛ(ϕ)

in C+(Λ), resp. C (Λ), whose restriction to every fiber off coincides with the
integral ofϕ restricted to that fiber.

2.7. The transfer principle. We are now in the position of explaining how mo-
tivic integrals specialize top-adic integrals and may be used to obtain a general
transfer principle allowing to transfer relations betweenintegrals fromQp toFp((t))
and vice-versa.

We shall assume from now on thatk is a number field with ring of integersO.
We denote byAO the set ofp-adic completions of all finite extensions ofk and by
BO the set of all local fields of characteristic> 0 which areO-algebras.

For K in CO := AO ∪ BO, we denote by

• RK the valuation ring
• MK the maximal ideal
• kK the residue field
• q(K) the cardinal ofkK

• ̟K a uniformizing parameter ofRK.

There exists a unique morphismac :K× → k×K extendingR×K → k×K and sending
̟K to 1. We setac(0) = 0. For N > 0, we denote byAO,N the set of fieldsK
in AO such thatkK has characteristic> N, and similarly forBO,N andCO,N. To
be able to interpret our formulas to fields inCO, we restrict the languageLDP to
the sub-languageLO for which coefficients in the valued field sort are assumed
to belong to the subringO[[ t]] of k((t)). We denote by Def(LO) the sub-category
of Defk of objects definable inLO, and similarly for functions, etc. For instance,
for S in Def(LO), we denote byC (S,LO) the ring of constructible functions onS
definable inLO.

We considerK as aO[[ t]]-algebra via

(2.7.1) λO,K :
∑

i∈N
ai t

i 7−→
∑

i∈N
ai̟

i
K.

Hence, if we interpreta in O[[ t]] by λO,K(a), everyLO-formulaϕ defines forK in
CO a subsetϕK of someKm×kn

K×Zr . One proves that if twoLO-formulasϕ andϕ′

define the same subassignmentX of h[m, n, r], thenϕK = ϕ
′
K for K in CO,N when

N ≫ 0. This allows us to denote byXK the subset defined byϕK, for K in CO,N
whenN ≫ 0. Similarly, everyLO-definable morphismf : X → Y specializes to
fK : XK → YK for K in CO,N whenN ≫ 0.

We now explain howϕ in C (X,LO) can be specialized toϕK : XK → Q for K in
CO,N whenN ≫ 0. Let us considerϕ in K0(RDefX(LO)) of the form [π : W→ X]
with W in RDefX(LO). ForK in CO,N with N ≫ 0, we haveπK : WK → XK , so we
may defineϕK : XK → Q by

(2.7.2) x 7−→ card
(

π−1
K (x)

)

.
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Forϕ in P(X), we specializeL into qK andα : X→ Z intoαK : XK → Z. By tensor
product we getϕ 7→ ϕK for ϕ in C (X,LO). Note that, under that construction,
functions inC+(X,LO) specialize into non negative functions.

Let K be inCO andA be a subset ofKm×kn
K×Zr . We consider the Zariski closure

Ā of the projection ofA into Am
K. One defines a measureµ on A by restriction of

the product of the canonical (Serre-Oesterlé) measure onĀ(K) with the counting
measure onkn

K × Zr .

Fix a morphismf : X → Λ in Def(LO) and considerϕ in C (X,LO). One can
show that ifϕ is relatively integrable, then, forN ≫ 0, for everyK in CO,N, and for
everyλ in ΛK, the restrictionϕK,λ of ϕK to f −1

K (λ) is integrable.
We denote byµΛK (ϕK) the function onΛK defined by

(2.7.3) λ 7−→ µ(ϕK,λ).

The following theorem says that motivic integrals specialize to the correspond-
ing integrals over local fields of high enough residue field characteristic.

Theorem 2.7.1(Specialization, Cluckers-Loeser [9] [10]). Let f : S → Λ be a
morphism inDef(LO). Letϕ be inC (S,LO) and relatively integrable with respect
to f . For N≫ 0, for every K inCO,N, we have

(2.7.4) (µΛ(ϕ))K = µΛK (ϕK).

We are now ready to state the following abstract transfer principle:

Theorem 2.7.2(Abstract transfer principle, Cluckers-Loeser [9] [10]). Letϕ be in
C (Λ,LO). There exists N such that for every K1, K2 in CO,N with kK1 ≃ kK2,

(2.7.5) ϕK1 = 0 if and only if ϕK2 = 0.

Putting together the two previous theorems, one immediately gets:

Theorem 2.7.3(Transfer principle for integrals with parameters, Cluckers-Loeser
[9] [10]). Let S → Λ and S′ → Λ be morphisms inDef(LO). Let ϕ and ϕ′

be relatively integrable functions inC (S,LO) andC (S′,LO), respectively. There
exists N such that for every K1, K2 in CO,N with kK1 ≃ kK2,

µΛK1
(ϕK1) = µΛK1

(ϕ′K1
) if and only if µΛK2

(ϕK2) = µΛK2
(ϕ′K2

).

In the special case whereΛ = h[0, 0, 0] and ϕ and ϕ′ are in C (S,LO) and
C (S′,LO), respectively, this follows from previous results of Denef-Loeser [12].

Remark 2.7.4. The previous constructions and statements may be extended di-
rectly - with similar proofs - to the global (non affine) setting.

Note that whenS = S′ = Λ = h[0, 0, 0], one recovers the classical

Theorem 2.7.5(Ax-Kochen-Eršov [5] [13]). Letϕ be a first order sentence( that
is, a formula with no free variables) in the language of rings. For almost all prime
number p, the sentenceϕ is true inQp if and only if it is true inFp((t)).



26 RAF CLUCKERS, THOMAS HALES, AND FRANÇOIS LOESER

We define a functionsG
M(ℓ) recursively. Assume thatsG′

M has been defined for all
G′ (with Levi subgroupM) such that dimG′ < dim G. Then, set

(9.1.1) sG
M(ℓ) = JG

M,M(ℓ) −
∑

G′,G

ιM(G,G′)sG′
M (ℓ).

The sum runs overEM(G) \ {G}. This definition is coherent, because each group
G′ ∈ EM(G) hasM as a Levi subgroup, so thatsG′

M is defined.
The conjecture of the weighted fundamental lemma is then that for all G,M,M′

as above, we have

(9.1.2) JG
M,M′(ℓ

′) =
∑

G′
ιM′(G,G

′)sG′
M′(ℓ

′).

for all G-regular elementsℓ′ in cM′ . The sum on the right runs overEM′(G).

9.2. Constructibility. By our preceding discussion, we see that the integrand
(Equation 8.5.4) ofJG

M,M′(ℓ
′) comes as specialization of a constructible function

on the definable subassignment

(9.2.1) Z = c̃H ×c̃G g̃D,θ.

This constructible function depends on parametersa, τ, γH ∈ c̃H, andγ ∈ gD,θ,a,τ.
If we interpret thisp-adically, as we vary the parametera (under the restriction
that it is a unit), the situation specializes to isomorphic groups and Lie algebras. In
particular, the fundamental lemma holds for one specialization of a if and only if it
holds for all specializations ofa. As we vary the generatorτ of the Galois group of
the unramified field extensionFr/F, we may obtain non-isomorphic data. Different
choices ofτ correspond to the fundamental lemma for various Lie algebras

(9.2.2) gD,θ′

whereθ′ andθ generate the same group〈θ′〉 = 〈θ〉 of automorphisms of the root
data. In particular, for eachτ, the constructible version specializes to a version of
the p-adic fundamental lemma for Lie algebras.

9.3. The main theorem. We state the transfer principle for the fundamental lemma
as two theorems, once in the unweighted case and again in the weighted case. In
fact, there is no needed for us to treat these two cases separately; they are both
a consequence of the general transfer principle for the motivic integrals of con-
structible functions given in Theorem 2.7.3. We state them as separate theorems,
only because of preprint of Ngô [27], which applies directly to the unweighted case
of the fundamental lemma.

Theorem 9.3.1(Transfer Principle for the Fundamental Lemma). Let (D, θ) be
given. Suppose that the fundamental lemma holds for all p-adic fields of positive
characteristic for the endoscopic groups attached to(D, θ′), asθ′ ranges over au-
tomorphisms of the root data such that〈θ′〉 = 〈θ〉. Then, the fundamental lemma
holds for all p-adic fields of characteristic zero with sufficiently large residual char-
acteristic p (in the same context of all endoscopic groups attached to(D, θ′)).
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Theorem 9.3.2(Transfer Principle for the weighted Fundamental Lemma). Let
(D, θ) be given. Suppose that the weighted fundamental lemma holdsfor all p-adic
fields of positive characteristic for the endoscopic groupsattached to(D, θ′), as
θ′ ranges over automorphisms of the root data such that〈θ′〉 = 〈θ〉. Then, the
weighted fundamental lemma holds for all p-adic fields of characteristic zero with
sufficiently large residual characteristic p (in the same context of all endoscopic
groups attached to(D, θ′)).

Proof. We have successfully represented all the data entering intothe fundamen-
tal lemma within the general framework of identities of motivic integrals of con-
structible functions. By the transfer principle given in Theorem 2.7.3, the funda-
mental lemma holds for allp-adic fields of characteristic zero, for sufficiently large
primesp. �

By the main result of [16], the unweighted fundamental lemmaholds for all
elements of the Hecke algebra for allp, once it holds for all sufficiently largep (for
a collection of endoscopic data obtained by descent from theoriginal data (D, θ)).
Thus, in the unweighted situation, we can derive the fundamental lemma for all
local fields of characteristic zero, without restriction onp, once the fundamental
lemma is known for a suitable collection of cases in positivecharacteristic.

10. A      

10.1. Adding exponentials.It is also possible to enlargeC (X) to a ringC (X)exp

also containing motivic analogues of exponential functions and to construct a nat-
ural extension of the previous theory toC exp.

This is performed as follows in [9] [10]. LetX be in Defk. We consider the
category RDefexp

X whose objects are triples (Y → X, ξ, g) with Y in RDefX and
ξ : Y → h[0, 1, 0] and g : Y → h[1, 0, 0] morphisms in Defk. A morphism
(Y′ → X, ξ′, g′) → (Y → X, ξ, g) in RDefexp

X is a morphismh : Y′ → Y in
DefX such thatξ′ = ξ ◦ h andg′ = g ◦ h. The functor sendingY in RDefX to
(Y, 0, 0), with 0 denoting the constant morphism with value 0 inh[0, 1, 0], resp.
h[1, 0, 0] being fully faithful, we may consider RDefX as a full subcategory of
RDefexp

X . To the category RDefexp
X one assigns a Grothendieck ringK0(RDefexp

X )
defined as follows. As an abelian group it is the quotient of the free abelian group
over symbols [Y → X, ξ, g] with (Y → X, ξ, g) in RDefexp

X by the following four
relations

(10.1.1) [Y→ X, ξ, g] = [Y′ → X, ξ′, g′]

for (Y→ X, ξ, g) isomorphic to (Y′ → X, ξ′, g′),

[(Y∪ Y′)→ X, ξ, g] + [(Y∩ Y′)→ X, ξ|Y∩Y′ , g|Y∩Y′ ]

= [Y→ X, ξ|Y, g|Y] + [Y′ → X, ξ|Y′ , g|Y′ ]
(10.1.2)

for Y andY′ definable subassignments of someW in RDefX andξ, g defined on
Y∪ Y′,

(10.1.3) [Y→ X, ξ, g+ h] = [Y→ X, ξ + h, g]
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