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Langlands program

@ Langland’s made a series of sweeping and inter-related
conjectures in the late 60’s regarding the connection
between number theory, representation theory and
automorphic forms.

@ Let’s start with some modern class field theory.

@ E. Frenkel, Recent advances in the Langland’s program,
Bull. AMS, 2004

@ Langland conjectured, among other things, that for a
number field F, there was a relationship, a specific
correspondence, between n-dimensional Galois

representations of F and automorphic representations of
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The fundamental lemma

@ It's not even wrong!

@ W. Casselman, introductory notes on the fundamental
lemma given in a web-based seminar series in 2007.

@ T. Hales, A statement of the fundamental lemma, posted
on the ArXiv, 2003.

@ Ngb Bao Chau, Le Lemme Fondamental Pour Les
Algebres De Lie, ArXiv, May, 2008.
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1. The naked lemma



Suppose G to be an unramified reductive group defined over
a p-adic field €, H an unramified endoscopic group of G. The
two have the same rank.

Given a strongly regular semi-simple element t of H, let T;
be its centalizer in  H, a maximal torus. There exists a special
embedding of 7} in (G. The element t gives rise to an element
ta of GG, which we assume to be strongly regular in G.

Define orbital integrals of a locally constant function of co m-
pact support on any reductive group—for any strongly regula r
t let

vol T'(0)
vol G(o0)

A(f,1)

(Mo -117)



vol T'(0)
vol G(0)

A(f 1) = ([Tl -1/

be!

flg~'tg) = .
/ca<t>\a dt

The ratio of volumes is to eliminate the effect of choice of
measures on G and T..

Orbital integrals have something to with fixed-points, sinc e
C'c(t) is the set of points on G fixed under conjugation by  t.
We shall see that this connection extends to something very
deep. The product is over roots  « with respect to 1'. Such
factors are familiar in fixed point formulas.



The data determining H have something to do a set of ele-
ments s in the torus 7 in the L- -group “G. They all give rise
to the same map ~ from the stable conjugacy class of i,
constant on the ordinary conjugacy classes. The Kk-orbital

Integrals are linear combinations of the ordnary orbital in te-
grals:

Z KT AG f7 ) y

t/ ~t

If kK = 1 this is the stable sum AZ(f, ).

Stable conjugacy means conjugacy in the algebrac closure.



Any element f of the Hecke algebra H(G//G(o)) gives rise
toan fin H(H//H(o)).

Fundamental Lemma :

Gu(fota) = A5 (7, 0)

for all strongly G-regular semi-simple elements ¢ of H.

Very roughly, this says that analysis on G invariant under
conjugation can be reduced to stable analysis on G and all
Its endoscopic groups.

Implicit in this are assertions about character sums in GG match-
Ing stable character sums in  H.
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In this way, each cocycle a; gives a complex constant k(a,) € C*.

Example 5.5. The element s € C* giving the endoscopic group H = Ug(1)
of SL(2) is s = —1, which may be identified with the character n — (—1)"
of Z. This gives the nontrivial character x of

HY(Gal(F/F),Up(1)) = Z/27.

6. STATEMENT OF THE FUNDAMENTAL LEMMA

6.1. Context. Let G be an unramified connected reductive group over F.
Let H be an unramified endoscopic group of G. Let v € H(F') be a strongly
regular semisimple element. Let Ty = Cg(y), and let T be a Cartan
subgroup of G that is isomorphic to it. More details will be given below
about how to choose Tg. The choice of Ty matters! Let v € Ty (F') map to
70 € Tg(F) under this isomorphism.

By construction, vy is semisimple. However, as G may have more roots
than H, it is possible for 7y to be singular, even when - is strongly regular.
If v € H(F) is a strongly regular semisimple element with the property that
o is also strongly regular, then we will call v a strongly G-regular element
of H(F).

If o/ is stably conjugate to 79 with cocycle a,, then s € Hom(X,,C*)
gives k(a,) € C*.

Let K¢ and Ky be hyperspecial maximal compact subgroups of G and
H. Let xg,x and xu,k be the characteristic functions of these hyperspecial
subgroups. Set
(6.0.1)

vol(Krp, dt) dg
Agu() = a(yo) — 112 [ } naT/ xa.x(g71g
( ) agg‘ ( ) ’ VOl K dg ; G('Y/ F \G(F ( )dt,

The set of roots ¢ are taken to be those relative to Tz. The sum runs over
all stable conjugates 7/ of 7g, up to conjugacy. This is a finite sum. The
group K7 is defined to be the maximal compact subgroup of T. Equation
is a finite linear combination of orbital integrals (that is, integrals over
conjugacy classes in the group with respect to an invariant measure). The
Haar measures dt’ on Cg (7, F) and dt on Tz(F') are chosen so that stable
conjugacy between the two groups is measure preserving. This particular
linear combination of integrals is called a k-orbital integral because of the
term k(a,) that gives the coefficients of the linear combination. Note that
the integration takes place in the group G, and yet the parameter v is an
element of H(F').

The volume terms vol(K, dg) and vol(Kr, dt) serve no purpose other than
to make the entire expression independent of the choice of Haar measures
dg and dt, which are only defined up to a scalar multiple.
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We can form an analogous linear combination of orbital integrals on the
group H. Set
(6.0.2)

I(KT dt) _ dh
Ast — -1 1/2 7"0 ! / h ! /h -
H(fY) H ‘04(7) ‘ |:V01(KH, dh) ; Ch (v F)\H(F) XH,K( Y )dt/

acdy !~y

This linear combination of integrals is like Ag m(7y), except that H replaces
G, Ky replaces K¢g, @5 (taken relative to Tp) replaces ®¢, and so forth.
Also, the factor x(a;) has been dropped. The linear combination of Equa-
tion B.0.2 is called a stable orbital integral, because it extends over all stable
conjugates of the element ~ without the factor x. The superscript st in the
notation is for ‘stable.’

Conjecture 6.1. (The fundamental lemma) For every v € H(F) that is
strongly G-reqular semisimple,

Ag,r(v) = A ().

Remark 6.2. There have been serious efforts over the past twenty years to
prove the fundamental lemma. These efforts have not yet led to a proof.
Thus, the fundamental lemma is not a lemma, it is a conjecture with a
misleading name. Its name leads one to speculate that the authors of the
conjecture may have severely underestimated the difficulty of the conjecture.

Remark 6.3. Special cases of the fundamental lemma have been proved. The
case G = SL(n) was proved by Waldspurger [28]. Building on the work of
[5], Laumon has proved that the fundamental lemma for G = U(n) follows
from a purity conjecture [21]. The fundamental lemma has not been proved
for any other general families of groups. The fundamental lemma has been
proved for some groups G of small rank, such as SU(3) and Sp(4). See [2],

[, 0.

6.2. The significance of the fundamental lemma. The Langlands pro-
gram predicts correspondences 7 < 7’ between the representation theory of
different reductive groups. There is a local program for the representation
theory of reductive groups over locally compact fields, and a global program
for automorphic representations of reductive groups over the adele rings of
global fields.

The Arthur-Selberg trace formula has emerged as a powerful tool in the
Langlands program. In crude terms, one side of the trace formula contains
terms related to the characters of automorphic representations. The other
side contains terms such as orbital integrals. Thanks to the trace formula,
identities between orbital integrals on different groups imply identities be-
tween the representations of the two groups.

It is possible to work backwards: from an analysis of the terms in the
trace formula and a precise conjecture in representation theory, it is possible
to make precise conjectures about identities of orbital integrals. The most
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basic identity that appears in this way is the fundamental lemma, articulated
above.

The proofs of many major theorems in automorphic representation theory
depend in one way or another on the proof of a fundamental lemma. For
example, the proof of Fermat’s Last Theorem depends on Base Change for
GL(2), which in turn depends on the fundamental lemma for cyclic base
change [I7]. The proof of the local Langlands conjecture for GL(n) depends
on automorphic induction, which in turn depends on the fundamental lemma,
for SL(n) [, [12], [28]. Properties of the zeta function of Picard modular
varieties depend on the fundamental lemma for U(3) [26], [2]. Normally,
the dependence of a major theorem on a particular lemma would not be
noteworthy. It is only because the fundamental lemma has not been proved
in general, and because the lack of proof has become a serious impediment to
progress in the field, that the conjecture has become the subject of increased
scrutiny.

7. REDUCTIONS

To give a trivial example of the fundamental lemma, if v and vy and their
stable conjugates are not in any compact subgroup, then

xe. k(g7 g9) =0 and xp k(R *y'h) =0

so that both Ag g (y) and Afi(v) are zero. Thus, the fundamental lemma
holds for trivial reasons for such ~.

7.1. Topological Jordan decomposition. A somewhat less trivial reduc-
tion of the problem is provided by the topological Jordan decomposition.
Suppose that ~ lies in a compact subgroup. It can be written uniquely as a
product

Y =YsVu = YuVsy
where v, has finite order, of order prime to the residue field characteristic
p, and =, is topologically unipotent. That is,
lim ~?" = 1.
n—oo
The limit is with respect to the p-adic topology. A special case of the
topological Jordan decomposition v € O C Gy, (F) is treated in [I3, p20].
In that case, 7, is defined by the formula
vs = lim ~9".
n—oo
Let 7, 70, and 4" be chosen as in Section Each of these elements has
a topological Jordan decomposition. Let G5 = Cg(70s) and Hs = Cr(7s).
It turns out that G, is an unramified reductive group with unramified en-
doscopic group H;. Descent for orbital integrals gives the formulas [20] [g]

Agua(v) = Ag,.m1, ()

Ap(r) = A5 ().
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LE LEMME FONDAMENTAL POUR LES
ALGEBRES DE LIE

par

Ngo Bao Chau

Introduction

Dans cet article, nous proposons une démonstration pour des conjec-
tures de Langlands, Shelstad et Waldspurger plus connues sous le nom
de lemme fondamental pour les algebres de Lie et lemme fondamental
non standard. On se reporte a[[L.TT. 1l et a [[.I2.7 pour plus de précisions
dans les énoncés suivants.

Théoréme 1. — Soient k un corps fini a q éléments, O un anneau de
valuation discréte complet de corps résiduel k et F son corps des frac-
tions. Soit G un schéma en groupes réductifs au-dessus de O dont [’ordre
du groupe de Weyl n’est pas divisible par la caractéristique de k. Soient
(K, p) une donnée endoscopique de G au-dessus de O et H le schéma en
groupes endoscopiques associé.

On a l’égalité entre la k-intégrale orbitale et ['intégrale orbitale stable

AG(Q)OZ(lg, dt) = AH(CLH)SOGH(lh, dt)

associées aux classes de conjugaison stable semi-simples régulieres a et
ap, de g(F) et h(F') qui se correspondent, auzx fonctions caractéristiques
14 et 1y des compacts g(O) et h(O) dans g(F') et h(F') et ot on a noté

Agla) = g (Rc(@)/2 oy Ap(ag) = gVl am)/2

Dg et Dy étant les fonctions discriminant de G et de H.


http://arXiv.org/abs/0801.0446v3
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Théoreme 2. — Soient Gy, Gy deuxr schémas en groupes réductifs sur
O ayant des données radicielles isogenes dont 'ordre du groupe de Weyl
n’est pas divisible par la caractéristique de k. Alors, on a [’égalité suivante
entre les intégrales orbitales stables

Soa1(191> dt) = Soa2(192a dt)

associées aur classes de conjugaison stable semi-simples réqulieres ay
et ay de gi1(F) et go(F) qui se correspondent et aux fonctions ca-
ractéristiques lg, et 1y, des compacts g1(0) et g2(0) dans gi(F) et
g2(F).

Nous démontrons ces théoremes dans le cas d’égale caractéristique.
D’apres Waldspurger, le cas d’inégales caractéristiques s’en déduit cf.
[78].

Les applications principales du lemme fondamental se trouvent dans
la réalisation de certains cas particuliers du principe de fonctorialité de
Langlands via la comparaison de formules des traces et dans la construc-
tion de représentations galoisiennes attachées aux formes automorphes
par le biais du calcul de cohomologie des variétés de Shimura. On se
réfere aux travaux d’Arthur [2] pour les applications & la comparaison
de formules des traces et a I'article de Kottwitz [42] ainsi qu’au livre en
préparation édité par Harris pour les applications aux variétés de Shi-
mura.

Cas connus et réductions. — Le lemme fondamental a été établi dans
un grand nombre de cas particuliers. Son analogue archimédien a été
entierement résolu par Shelstad dans [67]. Ce cas a incité Langlands et
Shelstad a formuler leur conjecture pour un corps non-archimédien. Le
cas du groupe SL(2) a été traité par Labesse et Langlands dans [46].
Le cas du groupe unitaire a trois variables a été résolu par Rogawski
dans [62]. Les cas assimilés aux Sp(4) et GL(4) tordu ont été résolus par
Hales, Schroder et Weissauer par des calculs explicites cf. [30], [64] et
[81]. Récemment, Whitehouse a poursuivi ces calculs pour démontrer le
lemme fondamental pondéré tordu dans ce cas cf. [80].

Le lemme fondamental pour le changement de base stable a été établi
par Clozel [12] et Labesse [45] a partir du cas de 'unité de I’algebre de
Hecke démontré par Kottwitz [40]. Auparavant, le cas GL(2) a été établi
par Langlands [47] et le cas GL(3) par Kottwitz [36].

Un autre cas important est le cas SL(n) résolu par Waldspurger dans
[75]. Le cas SL(3) avec un tore elliptique a été établi auparavant par
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@ Some basics: The Denef-Pas language, Lpp for the ring of
integers O for some number field k which is sometimes
written L.

e Three sorted: a valued field sort in the language of rings
with constants for O[[{]],

e aresidue field with constants for O and

a value group sort.

o Additionally, there are two functions, ac, the angular
component, from the valued field to the residue field, and
ord, the order, from the valued field sort to the residue field.

@ In this language for valued fields in which the residue field
extends O and the value field extends O[[t]] “canonically”,
one has uniform quantifier simplification and specifically a
“cell decomposition” which is suitable for creating a
measure.

@ R. Cluckers, A course on motivic integration, ModNet
tutorial in LaRoche, Apr. 2008.
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For each N > 0 and for each group homomorphism
Y : Z/NZ — C*

to the complex unit circle,

consider the sum

Spngf = Y Y(f(x)),

x€p(Z/NZ)

with f a definable function in the ring language.
How do these finite sums Sy y ¢ vary with N >0,

and how do they vary in definable families?
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Finite sums

For each N > 0 and for each group homomorphism
x: (Z/NZ)* — C*
to the complex unit circle, considering similar sums S, . r, one

can raise the same questions.

Still more generally,

SinNgfe = >, $(F(x)x(gx)),

x€p(Z/NZ)

with similar questions.

Raf Cluckers Course on Motivic Integration
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Finite sums

One of the quests of Motivic Integration can be described as the
search for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible numbers N > 0 and
choices of the characters ¢, x, the dependence of Sy, \ no.rg ON N

(or of similar even more general objects) (and the dependence in
definable families) can be understood in terms of as few as possible
"basic objects” of a similar kind Sy, \ n.¢.7 g

where "basic” often means that N is only allowed to be a prime
number,

or even better: in terms of an abstract, "basic’ geometric object.

Raf Cluckers Course on Motivic Integration
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Finite sums

Of course one can start with any ring of integers O in any number
field (instead of with Z)

and consider finite quotients O/ instead of Z/NZ.

This quest of Motivic Integration tries to be as uniform as possible
in number fields as well.

Raf Cluckers Course on Motivic Integration
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Integration

@ From finite sums to integration on local fields

Henselian local fields are:

Fq((2))

and finite field extensions of

QP?
the p-adic completion of Q for the norm |p‘a/b|, = p~*, ¢ € Z.
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Integration

Back to (definable) integration

Let ¢ : Qp — C* be an additive character
which is trivial on pZ, and nontrivial on Zj.

For a € Zy let xa: Q5 — C* be a multiplicative character to the
complex unit circle,

which is trivial on 1+ paZ, and nontrivial on 1 + aZp.

Raf Cluckers Course on Motivic Integration
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Let ¢ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f, g be definable functions.

Then, for any such data, one can consider the integral

Iw»X7QP$SO’f7g(a) :/

{xeQple(x)}
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Let ¢ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f, g be definable functions.

Then, for any such data, one can consider the integral

bicorens@ = [ w(Ge(E0)Ie

if it is absolutely integrable.
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Integration

Let ¢ be a formula in n free variables, in any language of valued
fields (out of a bunch of natural languages for valued fields)

and let f, g be definable functions.

Then, for any such data, one can consider the integral

bicorens@ = [ w(Ge(E0)Ie

if it is absolutely integrable.

1 can vary, as well as x5, a, and Q.
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Integration

o Op s h(3) = / BECN)xa () A,
{x€Qglp(x)}

@ How does /) depend on v, x,, and a?
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o Op s h(3) = / BECN)xa () A,
{x€Qglp(x)}

@ How does /) depend on v, x,, and a?

@ More importantly, how does it depend on Q,?

Raf Cluckers Course on Motivic Integration



Integration

o Op s h(3) = / BECN)xa () A,
{x€Qglp(x)}

@ How does /) depend on v, x,, and a?
@ More importantly, how does it depend on Q,?

@ How does it vary in definable families?
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Integration

The char p analogue

Likewise,
Let ¢ : Fp((t)) — C* be an additive character
which is trivial on pF,[[t]] and nontrivial on F,[[t]].
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Integration

The char p analogue

Likewise,
Let ¢ : Fp((t)) — C* be an additive character
which is trivial on pF,[[t]] and nontrivial on F,[[t]].

For a € Fy[[t]] let xa : Fp((t))* — C* be a multiplicative
character to the complex unit circle,
which is trivial on 1+ taF,[[t]] and nontrivial on 1 + aF,[[t]].
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character to the complex unit circle,
which is trivial on 1+ taF,[[t]] and nontrivial on 1 + aF,[[t]].

Then, for any such data, one can consider the integral
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Integration

The char p analogue

Likewise,
Let ¢ : Fp((t)) — C* be an additive character
which is trivial on pF,[[t]] and nontrivial on F,[[t]].

For a € Fy[[t]] let xa : Fp((t))* — C* be a multiplicative
character to the complex unit circle,
which is trivial on 1+ taF,[[t]] and nontrivial on 1 + aF,[[t]].

Then, for any such data, one can consider the integral

loer@etan@ = [ U(FCIa(8 ()l
ote(O)ere xEES((0)7l0()}

if it is absolutely integrable.
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Integration

Same questions:
how does it depend on F,((t)) and how does it vary in definable
families?
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Integration

Same questions:

how does it depend on F,((t)) and how does it vary in definable
families?

New question:
How does /.y depend on the characteristic?
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The quest of Motivic Integration can be re-described as
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for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K

choices of the characters ¢, x,
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for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data

Raf Cluckers Course on Motivic Integration



Integration

The quest of Motivic Integration can be re-described as the search
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The quest of Motivic Integration can be re-described as the search
for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data (or of similar even more general objects) (and the

dependence in definable families)
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The quest of Motivic Integration can be re-described as the search
for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data (or of similar even more general objects) (and the
dependence in definable families) can be understood in terms of as

few as possible
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Integration

The quest of Motivic Integration can be re-described as the search
for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data (or of similar even more general objects) (and the
dependence in definable families) can be understood in terms of as

few as possible "basic objects” of the kind Sy, \ F..x.f.g:
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The quest of Motivic Integration can be re-described as the search
for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data (or of similar even more general objects) (and the
dependence in definable families) can be understood in terms of as
few as possible "basic objects” of the kind Sy, \ F..x.f.g:

with 5.,y as before, and F the residue field of K,
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Integration

The quest of Motivic Integration can be re-described as the search
for a as wide as possible class of formulas ¢ and definable
functions f, g, so that for as many as possible local fields K
choices of the characters ¢, x, the dependence of I,  k . rg ON

the data (or of similar even more general objects) (and the
dependence in definable families) can be understood in terms of as
few as possible "basic objects” of the kind Sy, \ F..x.f.g:

with 5.,y as before, and F the residue field of K,

or even better: in terms of abstract, “basic” geometric objects.
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Transfer principles

The original transfer principle: Ax-Kochen-Ershov

The theory of a Henselian-valued field of characteristic zero
whose residue field also has characteristic zero is determined
by the theories of the residue field and the theory of the value
group.

Bradd Hart Model theory and the fundamental lemma



Transfer principles

The original transfer principle: Ax-Kochen-Ershov

The theory of a Henselian-valued field of characteristic zero
whose residue field also has characteristic zero is determined
by the theories of the residue field and the theory of the value

group.

More slides from Cluckers’ LaRoche tutorial and results from
Cluckers, Hale and Loeser, A transfer principle for the
fundamental lemma, ArXiv, Dec. 2007.

Bradd Hart Model theory and the fundamental lemma



Cluckers - Loeser approach

OOO)

In terms of these basic objects or of (
the integrals

, the theory understands

loix = / $(F)| ok,
{xeK|p(x)}

when K varies over Henselian local fields of big enough residual
characteristic.

And similarly in definable families using any kinds and any number
of parameters and quantifiers!

However, by the very nature of v, which has a different range
(image) when the local field varies (not only depending on the
residue field), this integral does not only depend on the residue
field,

and thus, a naive version of the transfer principle makes no sense.
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer
principle
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)
Let p;, f; be Denef - Pas definable for i = 1,2
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)

Let ;, f; be Denef - Pas definable for i = 1,2 (possibly living in a
definable family, that is, depending on parameters).
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The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)

Let p;, f; be Denef - Pas definable for i = 1,2 (possibly living in a
definable family, that is, depending on parameters).

Then for any Henselian local field K with big enough residual
characteristic,
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)

Let p;, f; be Denef - Pas definable for i = 1,2 (possibly living in a
definable family, that is, depending on parameters).

Then for any Henselian local field K with big enough residual
characteristic,

whether for each choice of 1 the equality
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)

Let p;, f; be Denef - Pas definable for i = 1,2 (possibly living in a
definable family, that is, depending on parameters).

Then for any Henselian local field K with big enough residual
characteristic,

whether for each choice of 1 the equality

bk o1, = by, K 0,85

holds,
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer

principle

Theorem (Rough version)

Let p;, f; be Denef - Pas definable for i = 1,2 (possibly living in a
definable family, that is, depending on parameters).

Then for any Henselian local field K with big enough residual
characteristic,

whether for each choice of 1 the equality

bk o1, = by, K 0,85

holds, only depends on the residue field of K.
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Cluckers - Loeser approach

The Cluckers - Loeser generalisation of the transfer
principle

This transfer principle (with parameter dependence and with 1)) is
very promising for applications in the Langlands program and
representation theory.

The application to several variants of the Fundamental Lemma has
been worked out recently (see C. - Hales - Loeser) and to aspects
of representation theory by Gordon and Cunningham.

Raf Cluckers Course on Motivic Integration 111
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h[1,0,0]. We denote byf : Z — Y the morphism induced by projection. Then
[17] is S-integrable if and only if.©diacN°f™ js and thenf, ([1;]) = LCrdiachef=

Once Theorem 2.5.1 is proved, one may proceed as followstém@:sthe con-
structions fronC, to C. One definesdC(Z) as the subgroup @&(Z) generated by
the image of §C,(Z). One shows that if : Z — Y is a morphism in De&f, the
morphismf, : IsC,(2) — IsC,(Y) has a natural extension

(2.5.3) fi: |SC(Z) - |SC(Y).

The proof of Theorem 2.5.1 is quite long and involved. In ashatl, the basic
idea is the following. Integration along residue field vhlés is controlled by (A5)
and integration along-variables by (A6). Integration along valued field variable
is constructed one variable after the other. To integrath mispect to one valued
field variable, one may, using (a variant of) the cell decositpm Theorem 2.2.1
(at the cost of introducing additional new residue field @neariables), reduce to
the case of cells which is covered by (A7) and (A8). An impottstep is to show
that this is independent of the choice of a cell decompasitiwhen one integrates
with respect to more than one valued field variable (one #iteother) it is crucial
to show that it is independent of the order of the variables,which we use a
notion of bicells.

2.6. Motivic measure. The relation of Theorem 2.5.1 with motivic integration is
the following. WhenS is equal toh[0, 0, 0], the final object of Def, one writes
IC,(2) for IsC,(Z) and we shall say integrable f&-integrable, and similarly for
C. Note that C,(h[0,0,0]) = C.(h[0,0,0]) = S Ky(RDefy) ®jr-1; A+ and that
IC(h[0,0,0]) = Ko(RDefk) ®z1; A. Forg in IC.(Z), or in IC(Z), one defines the
motivic integralu(e) by u(¢) = fi(¢) with f the morphisnz — h[0, 0, 0].

Let X be in Def; of dimensiond. Let¢ be a function irng’, (X), or in ' (X). We
shall sayy is integrable if its classd]q in C3(X), resp. inCY(X), is integrable, and
we shall set

M@=L¢W=MM&

Using the following Change of Variables Theorem 2.6.1, orag mevelop the
integration on global (nonféine) objects endowed with aftirential form of top
degree (similarly as in thp-adic case), cf. [7].

Theorem 2.6.1(Cluckers-Loeser [7])Let f: Y — X be an isomorphism iDefy.
For any integrable functiow in %, (X) or €' (X),

[ o= [ o0 gy
X Y

Also, the construction we outlined of the motivic measurgiea over almost
literally to a relative setting: one can develop a relathvedry of motivic integra-
tion: integrals depending on parameters of functiong’jror ¢ still belong to%’,
or & as functions of these parameters.
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More specifically, iff : X - A is a morphism ang is a function in%,(X) or
¢ (X) that is relatively integrable (a notion defined in [7]), az@nstructs in [7] a
function

(2.6.1) JON)

in .(A), resp. ¥(A), whose restriction to every fiber df coincides with the
integral ofyp restricted to that fiber.

2.7. The transfer principle. We are now in the position of explaining how mo-
tivic integrals specialize t@-adic integrals and may be used to obtain a general
transfer principle allowing to transfer relations betwesagrals fromQ,, to Fp((t))
and vice-versa.

We shall assume from now on thiats a number field with ring of integerS.
We denote byAy the set ofp-adic completions of all finite extensions loaind by
Bo the set of all local fields of characteristicO which are0-algebras.

ForK in %p := Ap U Bp, we denote by

Rk the valuation ring

Mk the maximal ideal

kg the residue field

g(K) the cardinal okg

wk a uniformizing parameter di.

There exists a unique morphisag : K* — k¢ extendingR¢ — ki and sending
wk to 1. We se@c(0) = 0. ForN > 0, we denote byAp n the set of fieldK
in Ap such thatkx has characteristic N, and similarly for8pn and%pn. To
be able to interpret our formulas to fields g, we restrict the languagépp to
the sub-language’y for which codficients in the valued field sort are assumed
to belong to the subrin@[[t]] of k((t)). We denote by Deify) the sub-category
of Defy of objects definable iy, and similarly for functions, etc. For instance,
for S in Def(Lp), we denote bys' (S, L) the ring of constructible functions d
definable inLy.

We consideK as aO|[[t]]-algebra via

(2.7.1) 0K : Zajtl — Zaiw'K.

ieN ieN
Hence, if we interpre in O[[t]] by 1o k (), every Lo-formula¢ defines forK in
%o asubsepy of someK™x ki xZ". One proves that if twd’p-formulasy andy’
define the same subassignmeanof h[m, n, r], thenyk = ¢} for K in 6o n when
N > 0. This allows us to denote b¥x the subset defined by, for K in o N
whenN > 0. Similarly, everyLy-definable morphisnf : X — Y specializes to
fk : Xk = Yk for K'in €p,n whenN > 0.

We now explain howp in €(X, L) can be specialized tox : Xk — Q for K in
%o.n WhenN > 0. Let us considep in Ko(RDefx(Lp)) of the form r : W — X]
with Win RDefx(Lp). ForK in épn with N > 0, we haverk : Wk — Xk, so we
may defingpk : Xk — Q by

(2.7.2) x —> card(mc(x).
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Forg in P(X), we specializé. into gk anda : X — Zinto ak : Xk — Z. By tensor
product we getp — ¢ for ¢ in €(X, Lp). Note that, under that construction,
functions in%’. (X, Lo) specialize into non negative functions.

LetK be in%p andAbe a subset d™xky xZ". We consider the Zariski closure
A of the projection ofA into AR. One defmes a measyueon A by restriction of
the product of the canonical (Serre Oesterle) measurd(Kn with the counting
measure oky x Z'.

Fix a morphismf : X — A in Def(£p) and consider in €(X, Lo). One can
show that ify is relatively integrable, then, fad > 0, for everyK in %y n, and for
everylin Ak, the restrictionpk ; of ¢k to f}gl(/l) is integrable.

We denote by, (¢k) the function onAk defined by

(2.7.3) A= p(ek.2)-

The following theorem says that motivic integrals spez@lio the correspond-
ing integrals over local fields of high enough residue fieldrelsteristic.

Theorem 2.7.1(Specialization, Cluckers-Loeser [9] [10]het f : S — A be a
morphism inDef(Ly). Lety be in%'(S, Lo) and relatively integrable with respect
to f. For N> 0O, for every K inép n, we have

(2.7.4) (ua(e)k = pag(¢k)-
We are now ready to state the following abstract transfercpie:

Theorem 2.7.2(Abstract transfer principle, Cluckers-Loeser [9] [L0let¢ be in
E (A, Lo). There exists N such that for every,K> in o n With kg, =~ Kg,,

(2.7.5) ¢k, =0 ifandonlyif ¢k, =0.
Putting together the two previous theorems, one immedgigiets:

Theorem 2.7.3(Transfer principle for integrals with parameters, Cluskkoeser
[9] [10]). LetS - A and S — A be morphisms iDef(Ly). Lety and ¢’
be relatively integrable functions i (S, Lp) and € (S’, Lo), respectively. There
exists N such that for every;KK; in 6p n with ke, ~ K,,

#AKI (QDK;L) = #AKl (QDI(]_) If and Only If #AKZ (QDKz) = #AKZ (QDI(Z)
In the special case where = h[0,0,0] and¢ and ¢’ are in%(S, Lo) and
(S, Lo), respectively, this follows from previous results of Deheeser [12].

Remark 2.7.4. The previous constructions and statements may be extended d
rectly - with similar proofs - to the global (norjae) setting.

Note that whers = S’ = A = h[0, 0, 0], one recovers the classical

Theorem 2.7.5(Ax-Kochen-ErSov [5] [13]) Lety be a first order sentendgthat
is, a formula with no free variablgsn the language of rings. For almost all prime
number p, the sentengeis true inQp, if and only if it is true inFp((t)).
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We define a functiorsS, (¢) recursively. Assume thaf has been defined for all
G’ (with Levi subgroupM) such that dimG’ < dim G. Then, set

(9.1.1) $5(0) = I () - Z (G, G (0).
GG
The sum runs ovety (G) \ {G}. This definition is coherent, because each group
G’ € Em(G) hasM as a Levi subgroup, so thﬁ is defined.
The conjecture of the weighted fundamental lemma is therfohall G, M, M’
as above, we have

(9.1.2) IS w) = Z i (GG (£).
G/

for all G-regular elementg’ in cy,. The sum on the right runs ové&sy (G).

9.2. Constructibility. By our preceding discussion, we see that the integrand
(Equation 8.5.4) oﬂﬁ w (€') comes as specialization of a constructible function
on the definable subassignment

(921) Z=2=Cq Xes QD,H-

This constructible function depends on parameters yy € ¢y, andy € gpgazr-

If we interpret thisp-adically, as we vary the parametai(under the restriction
that it is a unit), the situation specializes to isomorphigups and Lie algebras. In
particular, the fundamental lemma holds for one specitinaof a if and only if it
holds for all specializations & As we vary the generatarof the Galois group of
the unramified field extensidf /F, we may obtain non-isomorphic data.fi2rent
choices ofr correspond to the fundamental lemma for various Lie algebra

(9.2.2) db.¢

where® and generate the same grog@) = (6) of automorphisms of the root
data. In particular, for each the constructible version specializes to a version of
the p-adic fundamental lemma for Lie algebras.

9.3. The main theorem. We state the transfer principle for the fundamental lemma
as two theorems, once in the unweighted case and again indigihted case. In
fact, there is no needed for us to treat these two cases sapathey are both

a consequence of the general transfer principle for thevingtitegrals of con-
structible functions given in Theorem 2.7.3. We state therseparate theorems,
only because of preprint of Ngd [27], which applies dirgttl the unweighted case

of the fundamental lemma.

Theorem 9.3.1(Transfer Principle for the Fundamental Lemma&gt (D, 6) be
given. Suppose that the fundamental lemma holds for allip{félds of positive
characteristic for the endoscopic groups attached@od’), as¢’ ranges over au-
tomorphisms of the root data such th@t) = (6). Then, the fundamental lemma
holds for all p-adic fields of characteristic zero withygciently large residual char-
acteristic p (in the same context of all endoscopic groupscaed to(D, 8')).
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Theorem 9.3.2(Transfer Principle for the weighted Fundamental Lemmiagt
(D, 6) be given. Suppose that the weighted fundamental lemmafoold p-adic
fields of positive characteristic for the endoscopic groagtached to(D, &), as
@’ ranges over automorphisms of the root data such tgagt = (6). Then, the
weighted fundamental lemma holds for all p-adic fields ofabiristic zero with
syficiently large residual characteristic p (in the same contefall endoscopic
groups attached t¢D, 9")).

Proof. We have successfully represented all the data enteringhetéundamen-
tal lemma within the general framework of identities of mimtiintegrals of con-
structible functions. By the transfer principle given in€binem 2.7.3, the funda-
mental lemma holds for api-adic fields of characteristic zero, forfRgiently large
primesp. O

By the main result of [16], the unweighted fundamental lentm&ls for all
elements of the Hecke algebra for pJlonce it holds for all stliciently largep (for
a collection of endoscopic data obtained by descent fronotiggnal data D, 9)).
Thus, in the unweighted situation, we can derive the funadaahdemma for all
local fields of characteristic zero, without restriction pnonce the fundamental
lemma is known for a suitable collection of cases in positivaracteristic.

10. ADDITIVE CHARACTERS AND THE RELATIVE FUNDAMENTAL LEMMA

10.1. Adding exponentials.lt is also possible to enlargé(X) to a ringé (X)®*P
also containing motivic analogues of exponential functiand to construct a nat-
ural extension of the previous theory@&™".

This is performed as follows in [9] [10]. LeX be in Def. We consider the
category RDe}" whose objects are triple& (— X, &,g) with Y in RDefy and
£:Y — h0,1,0] andg : Y — h[1,0,0] morphisms in Degf. A morphism
Y - X&.9) > (Y > X&09) in RDeff® is a morphismh : Y’ — Y in
Defy such thatt’ = £ ohandg = go h. The functor sending in RDefx to
(Y,0,0), with 0 denoting the constant morphism with value (hj, 1,0], resp.
h[1, 0, 0] being fully faithful, we may consider RDgfas a full subcategory of
RDefy". To the category RDEI® one assigns a Grothendieck rikg(RDef}*)
defined as follows. As an abelian group it is the quotient efftkee abelian group
over symbols Y — X, & g] with (Y — X, £,9) in RDefZ® by the following four
relations

(10.1.1) IV — X.&9 =[Y - X¢.,9]
for (Y — X, &,g) isomorphicto ¥’ — X,&',9),
(YUY) > X0+ [(YNY) = X Evav. Ovav']
=[Y = X &y, gv] +[Y' = X &v, 9]

for Y andY’ definable subassignments of sokvein RDefx and¢, g defined on
YUY,

(10.1.3) Y — X, &,g+h =[Y - X.é+h,q]

(10.1.2)
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