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Types

Fix a theory T in a language L. We consider (partial) functions p on
the space of formulas FS for a tuple of sorts S to R.

Definition
1. p is a (partial) type if there is a modelM of T and a ∈M of the

appropriate sort such that p(ϕ) = ϕM(a) for all ϕ ∈ dom(p). We
say that a realizes p.

2. p is called a complete type if the domain of p is FS.

Fact
• p is a type iff it is finitely satisfied i.e. if the restriction to every

finite subset of its domain is a type.
• A complete type is a linear functional on FS.



A topology on the type space

We fix a language L and a complete theory T in this language. For a
tuple of sorts S from L, we define the set SS(T ) to be all complete
types defined on FS.
The logic topology on SS(T ) is the restriction of the weak-* topology
on the dual space of FS. Equivalently, the collection of sets

{p ∈ Ss(T ) : p(ϕ) < r} for every formula ϕ and real number r ,

form the collection of basic open sets.

Fact
• The logic topology on Ss(T ) is compact and Hausdorff.
• If ϕ is a formula then the function fϕ from SS(T ) to R given by

p 7→ p(ϕ) is continuous.



What is a formula?

Proposition
The following are equivalent:

1. f is a continuous function from SS(T ) to R.
2. f is the uniform limit of functions of the form fϕ i.e. for every n

there is a formula ϕn such that for all p, |f (p)− p(ϕn)| ≤ 1/n.

Definition
A Cauchy sequence of formulas ϕ in FS will be called a definable
predicate and interpreted in an L-structureM by

ϕM(a) = lim
n→∞

ϕMn (a).

Of course what we are doing is extending the notion of formula to the
Banach space generated by FS.



A metric on the type space

Fix a complete theory T .
• Define a metric on SS(T ) as follows: for p,q ∈ SS(T ), d(p,q) is

the infinum of dM(a,b) whereM ranges over all models of T ,
a ∈M is a realization of p and b ∈M is a realization of q. d is
computed as the maximum of the values dS as S ranges over the
sorts in S.

• Claim: d defines a metric on SS(T ).
• Notice that d(p,q) is always realized - this follows by

compactness as does the triangle inequality.

Proposition
The metric topology on SS(T ) refines the logic topology.
Question: When do the metric and logic topologies coincide?



A useful lemma

Lemma (MTFMS, 2.10)
Suppose that F ,G : X → [0,1] are functions such that

∀ε > 0 ∃δ > 0 ∀x ∈ X (F (x) ≤ δ =⇒ G(x) ≤ ε)

Then there exists an increasing, continuous function α : [0,1]→ [0,1]
such that α(0) = 0 and

∀x ∈ X (G(x) ≤ α(F (x))).



Zero sets and distance predicates

Fix a theory T in a language L and a modelM of T .
• For a definable predicate ϕ(x̄), the zero set of ϕ inM is

{ā ∈M : ϕM(ā) = 0}

• If X is a non-empty closed subset of some product of sorts inM
we call P(x) = d(x ,X ) = inf{d(x , y) : y ∈ X} the distance
predicate for X .



Definable sets

Definition
Suppose we have a theory T in a language L and Si for i ≤ n are
sorts in L. We call an assignment to every modelM of T , a closed
subset XM of

∏m
j=1 SMj a uniform assignment relative to the theory

T . This assignment,M 7→ XM, is called a definable set if, for all
formulas ψ(x̄ , ȳ), the functions defined for allM, models of T , by

sup
x̄∈XM

ψM(x̄ , ȳ) and inf
x̄∈XM

ψM(x̄ , ȳ)

are definable predicates for T .



Critical remarks about definable sets

• A natural source of uniform assignments is the zero-set of any
definable predicate.

• If an assignment is a definable set then it is the assignment
arising from the zero-set of some definable predicate. Just
choose ψ(x̄ , ȳ) := d(x̄ , ȳ) and parse inf

x̄∈XM
ψ(x̄ , ȳ).

• The definition of definable set could be read

“Definable sets are those sets you can quantify over.”

Notice in the discrete case, you can quantify over the solution set
of any formula.

• There are lots of zero sets which are NOT definable sets.



A second characterization of definable sets

Theorem
Suppose thatM 7→ XM is a uniform assignment relative to a theory
T . Then the following are equivalent:

1. This assignment is a definable set.
2. The distance predicate d(x̄ ,XM) is a definable predicate for T .

Proof.
For (2) implies (1), fix a formula ψ. It is uniformly continuous so using
MTFMS 2.10, we can find continuous α such that for all x̄ , ȳ and z̄

|ψ(x̄ , z̄)− ψ(ȳ , z̄)| ≤ α(d(x̄ , ȳ)).

Consider
inf
z̄

(ψ(x̄ , z̄) + α(d(z̄,X ))) and inf
z̄∈X

ψ(x̄ , z̄).

The claim is that these are equal and the first is a definable
predicate.



A third characterization of definable sets

Theorem
Suppose thatM 7→ XM is a uniform assignment relative to a theory
T . Then the following are equivalent:

1. This assignment is a definable set.
2. For all sets I, ultrafilters U on I and families of models of T ,Mi

for i ∈ I, ifM =
∏
UMi then

XM =
∏
U

XMi .



Examples of definable sets
• Finite products of sorts; ranges of terms - these are easy

because you can clearly quantify over them. The ranges of
definable functions are also definable sets.

• The ball of radius 1 around a point in the ball of radius 1 in a
Hilbert space. Far more generally, if the underlying metric space
has unique geodesics then balls will be definable sets.

• Ultrametrics give examples that are not definable. Here is a toy
example: on the interval [0,2] define the metric d

d(x , y) =

{
max{x , y} if x 6= y
0 if x = y

If we fix 0 as a constant than the zero-set of d(0, x) ≤ 1 doesn’t
survive ultrapowers. These types of examples arise naturally
from metrics associated to certain valuations.

• There are lots of examples from functional analysis but we will
leave those for later.



Principal types

Definition
We call a complete type p principal if the logic topology on the type
space refines the metric topology at p.

Proposition
Suppose that p is a complete type for a complete theory T . The
following are equivalent:

1. p is principal.
2. The zero set of p is definable.
3. There are formulas ϕm and numbers δm > 0 such that for every

m, p(ϕm) = 0 and for any complete type q

if “ϕm(x̄) ≤ δm” is in q then d(p,q) ≤ 1
m
.



The omitting types theorem

Theorem
Suppose that L is a separable language, T is a complete theory in L
and p is a complete type. Then every model of T realizes p iff p is
principal.



Separable categoricity

Theorem
For a complete theory T in a separable language, T is separably
categorical iff all complete types are principal.



Imaginaries: canonical parameters

• Start with a theory T in a language L. The goal is to create the
maximal conservative expansion of T . We do this with three
separate constructions.

• Canonical parameters: If ϕ(x̄ , ȳ) is a formula in L and ȳ is of
sort S̄ then we add a new sort Sϕ with metric symbol dϕ and a
function symbol πϕ : S̄ → Sϕ. We add to T the sentences:

sup
ȳ,ȳ ′
|dϕ(πϕ(ȳ), πϕ(ȳ ′))− sup

x̄
|ϕ(x̄ , ȳ)− ϕ(x̄ , ȳ ′)| |

and
sup

z
inf
ȳ

(dϕ(πϕ(ȳ), z)).



Imaginaries: countable products

Countable products: If (Sn : n < ω) is a sequence of sorts in L then
we add a new sort S with metric symbol dS and function symbols
πn : S → Sn. Add to T , for all n < ω, the sentences

sup
x1∈S1

. . . sup
xn∈Sn

inf
y∈S

max
i≤n

di (πi (y), xi )

where di is the metric on Si , and

sup
x,y∈S

|dS(x , y)−
n∑

i=1

di (πi (x), πi (y))

2i | .− 1
2n .



Imaginaries: definable sets

Definable sets: If A(x1, ..., xn) is a definable set in T then add a sort
SA with metric symbol dA, and function symbols fi : SA → Si for i ≤ n
where Si is the sort of xi . We add to T the sentences

|A(x1, ..., xn)− inf
y

max
i≤n

di (xi , fi (y))|

where di is the metric symbol on Si , and

|dA(x , y)−max
i≤n

di (xi , fi (y))|.



Conceptual completeness

T eq will be the smallest theory expanding T which is closed under
canonical parameters, countable products and definable sets. One
proves by induction on the construction that this is a conservative
expansion of T .

Theorem
If T is a complete theory and T ′ is a conservative extension of T i.e.
the forgetful functor from Mod(T ′) to Mod(T ) is an equivalence of
categories then T ′ can be interpreted in T eq .


