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Types

Fix a theory T in a language £. We consider (partial) functions p on
the space of formulas 5 for a tuple of sorts Sto R.
Definition

1. pis a (partial) type if there is a model M of T and a € M of the
appropriate sort such that p(¢) = ¢™(a) for all ¢ € dom(p). We
say that a realizes p.

2. pis called a complete type if the domain of p is Fs.

Fact

e pis atype iff it is finitely satisfied i.e. if the restriction to every
finite subset of its domain is a type.

» A complete type is a linear functional on Fg.



A topology on the type space

We fix a language £ and a complete theory T in this language. For a
tuple of sorts S from L, we define the set Sg(T) to be all complete
types defined on F5.

The logic topology on Sg(T) is the restriction of the weak-* topology
on the dual space of F5. Equivalently, the collection of sets

{p € Sg(T) : p(e) < r} for every formula ¢ and real number r,

form the collection of basic open sets.
Fact

e The logic topology on Sg(T) is compact and Hausdorff.

e Ify is a formula then the function f, from Sg(T) to R given by
p — p(p) is continuous.



What is a formula?

Proposition
The following are equivalent:
1. f is a continuous function from Sg(T) to R.

2. f is the uniform limit of functions of the form f, i.e. for every n
there is a formula ¢, such that for all p, |f(p) — p(en)| < 1/n.

Definition
A Cauchy sequence of formulas i in 75 will be called a definable
predicate and interpreted in an £-structure M by

7M@) = lim ¢y'(@).

Of course what we are doing is extending the notion of formula to the
Banach space generated by 7.



A metric on the type space

Fix a complete theory T.
e Define a metric on Sg(T) as follows: for p,q € S(T), d(p,q) is

the infinum of d(a, b) where M ranges over all models of T,
ac M is arealization of p and b € M is a realization of q. d is
computed as the maximum of the values ds as S ranges over the
sorts in S.

e Claim: d defines a metric on Sg(T).

o Notice that d(p, q) is always realized - this follows by
compactness as does the triangle inequality.

Proposition
The metric topology on Sg(T) refines the logic topology.
Question: When do the metric and logic topologies coincide?



A useful lemma

Lemma (MTFMS, 2.10)
Suppose that F, G : X — [0, 1] are functions such that

Ve>030 >0Vxe X (F(x)<d = G(x) <e¢)

Then there exists an increasing, continuous function « : [0,1] — [0, 1]
such that a(0) = 0 and

Vx € X (G(x) < a(F(x))).



Zero sets and distance predicates

Fix atheory T in a language £ and a model M of T.
o For a definable predicate ¢(X), the zero set of ¢ in M is

{ae M: oM(@) =0}
e If X is a non-empty closed subset of some product of sorts in M

we call P(x) = d(x, X) =inf{d(x,y) : y € X} the distance
predicate for X.



Definable sets

Definition
Suppose we have a theory T in a language £ and S; for i < nare
sorts in £. We call an assignment to every model M of T, a closed
subset XM of H}L SjM a uniform assignment relative to the theory
T. This assignment, M — XM is called a definable set if, for all
formulas ¥ (X, y), the functions defined for all M, models of T, by
sup v M(x,y) and _inf ¢M(x,y)
XeXM XexM

are definable predicates for T.



Critical remarks about definable sets

A natural source of uniform assignments is the zero-set of any
definable predicate.

If an assignment is a definable set then it is the assignment
arising from the zero-set of some definable predicate. Just
choose (X, y) := d(X,y) and parse _ |r)1(fM (X, ¥).

xXe

The definition of definable set could be read
“Definable sets are those sets you can quantify over.”

Notice in the discrete case, you can quantify over the solution set
of any formula.

There are lots of zero sets which are NOT definable sets.



A second characterization of definable sets

Theorem
Suppose that M — XM is a uniform assignment relative to a theory
T. Then the following are equivalent:

1. This assignment is a definable set.
2. The distance predicate d(x, X) is a definable predicate for T.

Proof.
For (2) implies (1), fix a formula . It is uniformly continuous so using
MTFMS 2.10, we can find continuous « such that for all x, y and z

(X, 2) = (¥, 2)| < a(d(X, 7))

Consider
inf((X,2) + a(d(2, X))) and inf (%, 2).

The claim is that these are equal and the first is a definable
predicate. O



A third characterization of definable sets

Theorem
Suppose that M — XM is a uniform assignment relative to a theory
T. Then the following are equivalent:

1. This assignment is a definable set.

2. For all sets |, ultrafilters U on | and families of models of T, M,
forie I, if M =], M, then

XM = Hfo.
u



Examples of definable sets

o Finite products of sorts; ranges of terms - these are easy
because you can clearly quantify over them. The ranges of
definable functions are also definable sets.

e The ball of radius 1 around a point in the ball of radius 1 in a
Hilbert space. Far more generally, if the underlying metric space
has unique geodesics then balls will be definable sets.

o Ultrametrics give examples that are not definable. Here is a toy
example: on the interval [0, 2] define the metric d

max{x, if x
d(x,y) = {x,y} | fy
0 ifx=y
If we fix 0 as a constant than the zero-set of d(0, x) < 1 doesn’t

survive ultrapowers. These types of examples arise naturally
from metrics associated to certain valuations.

e There are lots of examples from functional analysis but we will
leave those for later.



Principal types

Definition

We call a complete type p principal if the logic topology on the type
space refines the metric topology at p.

Proposition

Suppose that p is a complete type for a complete theory T. The
following are equivalent:

1. p is principal.
2. The zero set of p is definable.

3. There are formulas ¢, and numbers 6, > 0 such that for every
m, p(em) = 0 and for any complete type q

if “om(X) < 6" is in q then d(p, q) <

1
m



The omitting types theorem

Theorem

Suppose that L is a separable language, T is a complete theory in L

and p is a complete type. Then every model of T realizes p iff p is
principal.



Separable categoricity

Theorem
For a complete theory T in a separable language, T is separably
categorical iff all complete types are principal.



Imaginaries: canonical parameters

Start with a theory T in a language £. The goal is to create the
maximal conservative expansion of T. We do this with three
separate constructions.

Canonical parameters: If o(x, y) is a formula in £ and y is of
sort S then we add a new sort S, with metric symbol d,, and a
function symbol 7, : S — S,. We add to T the sentences:

Sypr |dy (7o (¥), 7o (V') — sup lp(X,¥) — (X, 7)) |
and
Sl.z,lp irj_)f(dg,(m(j/), z)).



Imaginaries: countable products

Countable products: If (S, : n < w) is a sequence of sorts in £ then
we add a new sort S with metric symbol ds and function symbols
S — S, Addto T, for all n < w, the sentences

sup ... sup inf maxd(mi(y), Xi)
XES xS, YES i<n

where d; is the metric on S;, and

sup |ds(x,y) -~ ATCRTON

X,yeS i—1



Imaginaries: definable sets

Definable sets: If A(x1, ..., x,) is a definable set in T then add a sort
Sa with metric symbol da, and function symbols f; : Sp — Sjfori < n
where S; is the sort of x;. We add to T the sentences

|A(X1, ..., Xp) — infmax di(x;, fi(y))|
Yy i<n

where d; is the metric symbol on S;, and

|da(x, y) — max di(xi, fi(y))|-



Conceptual completeness

T°9 will be the smallest theory expanding T which is closed under
canonical parameters, countable products and definable sets. One
proves by induction on the construction that this is a conservative
expansion of T.

Theorem

If T is a complete theory and T' is a conservative extension of T i.e.
the forgetful functor from Mod(T") to Mod(T) is an equivalence of
categories then T' can be interpreted in T*¢9.



