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Urysohn space
• The simplest continuous language is one which has only one

sort and one relation symbol - the metric symbol. There are a lot
of interesting metric spaces. Let’s restrict ourselves to one’s with
diameter 1 i.e. where the metric is bounded by 1.

• Here is a construction of a universal, separable metric space -
first constructed by Urysohn.

• We first record some facts about finite metric spaces:
• (Amalgamation) If f : A→ B and g : A→ C are isometries and all

spaces are finite then there is a finite D and isometries h : B → D
and j : C → D such that hf = jg.

• Since a 1-point space embeds into any metric space, we also have
joint embedding.

• Consider a finite metric space A and the set of one-point
extensions S(A); we topologize S(A) with the help of the space
of 1-Lipschitz maps on A, L(A).

• We put a metric on L(A):

d(f ,g) = max
x
|f (x)− g(x)|

L(A) is a compact metric space.



Urysohn space, cont’d

• Identify a ∈ A with fa : X → [0,1] by fa(x) = d(x ,a). One checks
that a 7→ fa is an isometry.

• If B = A ∪ {b}, a 1-point extension of A, then identify b with
fb(x) = d(x ,b) for x ∈ X . One checks that fb ∈ L(A) and this is
an isometric embedding over A.

• The key point is that the space of 1-point extensions of A is
separable and compact.

• Now we build a metric space U as the completion of the union of
an increasing chain of finite spaces Xn.

• For each finite F ⊆ Xn we keep track of a countable dense
subset of 1-point extensions of F and promise to amalgamate
them all eventually.

• The inductive stage then looks like: F ⊆ Xn and G, a 1-point
extension of F . We let Xn+1 be an amalgamation of Xn and G
over F .



Urysohn space, cont’d

Theorem
• The metric space U is separable, complete and universal i.e.

isometrically embeds all separable metric spaces.
• U is ultrahomogeneous.
• The theory of U is separably categorical.



Urysohn space, cont’d

• Instead of a full sketch of a proof, let’s identify some axioms that
hold in U and one cute construction. I will leave the rest as an
exercise.

• If {a1, . . . ,an} is an enumeration of an n-element metric space A
then let ConA(x1, . . . , xn), the configuration formula for A, be

max{|d(xi , xj )− rij | : i , j ≤ n}

where rij = d(ai ,aj ). Clearly, if ConA(a1, . . . ,an) = 0 and
ConA(b1, . . . ,bn) = 0 then the map ai 7→ bi is an isometry.

• What if ConA(b1, . . . ,bn) < ε? Is there some finite metric space
containing B and an isometric copy of A not too far away? Notice
the connection to definable sets.

• Yes there is and let’s construct it for definiteness.



Urysohn space, cont’d
• We have some space B = {b1, . . . ,bn} such that

ConA(b1, . . . ,bn) = ∆.
• Build a metric space with elements {a1, . . . ,an,b1, . . . ,bn} with

the given metrics on A and B.
• Set d(ai ,bi ) = ∆/2 for all i ≤ n and for i , j ≤ n

d(ai ,bj ) = min{d(ai ,ak ) + d(bk ,bj ) + ∆/2 : k ≤ n}.

• One checks that this defines a metric on these 2n points and the
copy of A lies ∆/2 away from the copy of B.

• Now suppose that we have a one point extension of A,
C = A ∪ {c}. Freely amalgamate B and C over A.

• I am interested in the value of ConC(b1, . . . ,bn, c). The
interesting cases are d(c,bi ) for i ≤ n. But

|d(c,bi )− d(c,ai )| ≤ d(ai ,bi ) = ∆/2

so ConC(b1, . . . ,bn, c) = ∆.
• What did we just achieve?



Urysohn space, cont’d

• Let A be any finite metric space and C, a one point extension.
Consider the sentence

ϕA,C := sup
x1,...,xn

|ConA(x1, . . . , xn)− inf
y

ConC(x1, . . . , xn, y)|.

• I claim that these sentences hold in U . Since U is
ultrahomogeneous and embeds all finite metric spaces, if one
fixes B = {b1, . . . ,bn} in U with ConA(b1, . . . ,bn) = ∆ then by the
construction on the previous slide, we can find c such that
ConC(b1, . . . ,bn, c) = ∆.

• These sentences allow one to do an approximate back and forth
argument showing that Th(U) is separably categorical.



Open question about Urysohn space

• The construction of Urysohn space feels like a Fraı̈ssé
construction and is in a technical sense. This makes it a generic
object for the class of finite metric spaces.

• Is it also in some sense a random object? More precisely:
• Is Urysohn space elementarily equivalent to an ultraproduct of

finite metric spaces?



Linear operators

• Fix a Hilbert space H and consider an linear operator A on H.
The operator norm of A is defined as

‖A‖ := sup{‖Ax‖
‖x‖

: x ∈ H}

if this is defined and then we call A bounded.
• We write B(H) for the algebra of all bounded operators on H.
• B(H) carries a natural complex vector space structure and

multiplication is composition. There is an adjoint operation
defined via the inner product on H: for A ∈ B(H), A∗ satisfies, for
all x , y ∈ H,

〈Ax , y〉 = 〈x ,A∗y〉.

• The operator norm puts a normed linear structure on B(H) and
the norm satisfies the C∗-identity ‖A∗A‖ = ‖A‖2 for all A ∈ B(H).



C∗-algebras

Definition
• A concrete C∗-algebra is a norm closed *-subalgebra of B(H) for

some Hilbert space H.
• An abstract C∗-algebra is Banach *-algebra which satisfies the

C∗-identity.

Example

• For any Hilbert space H, B(H) is a concrete C*-algebra. In
particular, Mn(C), n × n complex matrices, is a C∗-algebra for all
n.

• C(X ), all continuous functions on a compact, Hausdorff space X
is an abelian (abstract) C∗-algebra. The norm is the sup-norm.
By a result of Gelfand and Naimark, these are all the unital
abelian C∗-algebras.



C∗-algebras

Example

• C∗-algebras are closed (as abstract C∗-algebras) under direct
sums and direct limits with *-homomorphism embeddings as
connecting maps.

• Any finite-dimensional C∗-algebra is the direct sum of finitely
many copies of matrix algebras.

Theorem (Gelfand-Naimark-Sigal)
Every abstract C∗-algebra is isomorphic to a concrete C∗-algebra.



C∗-algebraic ultraproducts

• A dead give-away that model theory is involved is that operator
algebraists are using ultraproducts.

• Suppose Ai are C∗-algebras for all i ∈ I and that U is an
ultraproduct I. Consider the bounded product∏bAi := {ā ∈

∏
Ai : lim

i→U
‖ai‖ <∞}

and the two-sided ideal cU

{ā ∈
∏bAi : lim

i→U
‖ai‖ = 0}.

The ultraproduct,
∏
U Ai is defined as

∏b Ai/cU .



C∗-algebras as metric structures

• We treat C∗-algebras as we did Hilbert spaces: there are sorts
for each ball of radius n ∈ N.

• There are inclusion maps between the balls. Additionally there
are functions for the restriction of all the operations to the balls.
This involves the addition, multiplication, scalar multiplication and
the adjoint.

• The metric is given via the operator norm as ‖x −y‖ on each ball.
• It is routine to check that all of these functions are uniformly

continuous (the only issue is multiplication and this holds
because we have restricted the norm).

• The sorts are complete since C∗-algebras are complete.
• Do we have an elementary class? You would think so since

C∗-algebras are closed under ultraproducts and subalgebras.



Axioms for C∗-algebras
• There are many universal axioms expressing that a C∗-algebra is

a Banach *-algebra. These involve saying that two terms are
equal or that some norm or other is equal to or less than
something else.

• For instance, to say τ(x̄) = σ(x̄) we need to write
supx̄ d(τ(x̄), σ(x̄)) which is awful so we write the first and mean
the second.

• For the metric, we have d(x ,0) = ‖x‖ and d(x , y) = ‖x − y‖.
One can now write out the axioms for a Banach space.

• Include ‖x∗‖ = ‖x‖ and the C∗-identity, ‖x∗x‖ = ‖x‖2.
• Now comes the fussy bits about using balls: we have

sup
x∈B1

‖x‖ ≤ 1 and sup
x∈Bn

min{1 .− ‖x‖, inf
y∈B1

‖x − y‖}.

• This feels a little awkward since operator algebraists know that
C∗-algebras are closed under subalgebras and we know that
should mean the axioms are universal. They are if you introduce
enough terms!



Some results and open questions

• Operator algebraists had already discovered definable sets albeit
just for quantifier-free formulas. They called them weakly stable
relations.

• The set of self-adjoint elements, projections, partial isometries
etc. are all definable sets and this is helpful to know when
expressing certain results in continuous logic.

• Coupled with knowing that for a C∗-algebra A, Mn(A) can also be
viewed as a definable set, the ability to identify projections as a
definable set allows one access to the so-called K-theory of A.
Understanding what fragment of the K-theory of an algebra is
elementary is one open problem in the continuous model theory
of C∗-algebras.



Some results and open questions

• The use, and usefulness, of ultraproducts in operator algebras
made some people ask about how whether there were different
ultrapowers of separable C∗-algebras. They also asked a subtler
question about the so-called relative commutant or central
sequence algebra.

• If A is a separable C∗-algebra and U is a non-principal ultrafilter
on N, we consider the subalgebra of AU called the relative
commutant

A′ ∩ AU = {b ∈ AU : [b,A] = 0}

where A is identified with its diagonal embedding in AU .

Theorem
For any infinite-dimensional C∗-algebra A, if CH does not hold then
there are many non-isomorphic ultrapowers of A via ultrafilters on N.
Moreover, there are many non-isomorphic relative commutants as
well.



Some results and open questions

• The usefulness of the ultraproduct construction arises from its
degree of saturation. Relative commutants are also to some
extent saturated - quantifier-free saturated and even more on
occasion.

• A general model theory question would be: is there some
abstract version of the relative commutant that could be useful in
other contexts?


