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C*-algebra basics

Definition
A C*-algebra is a *-subalgebra A of the bounded linear operators
B(H) on a complex Hilbert space H which is closed in the operator
norm topology. Alternatively, a C*-algebra is a Banach *-algebra A
which satisfies the C*-identity ‖a∗a‖ = ‖a‖2 for all a ∈ A.
The first sentence defines a concrete representation of a C*-algebra
and the second gives an abstract definition.

Theorem (Gel’fand, Naimark, Sigal)
Every abstract C*-algebra has a concrete representation.
Examples:

• Mn(C); in general, B(H); C0(X ) for any locally compact space X
- these form all the commutative C*-algebras.

• C*-algebras are closed under inductive limits where the relevant
morphisms are *-homomorphisms.

• C*-algebras are closed under tensor products but ...



Continuous model theory of C*-algebras

• A C*-algebra can be thought of as a metric structure by
introducing a sort for each ball of operator norm N ∈ N.

• One has function symbols for the sorted operations of +, · and ∗
as well as the unary operations of multiplication by λ for every
λ ∈ C. It is sometimes useful to consider an expanded language
in which one has a function symbol for every *-polynomial (again
properly sorted).

• The only relation symbol is the operator norm ‖ · ‖.
• The basic formulas of continuous logic which are relevant here

are ‖p(x̄)‖ where p(x̄) is a *-polynomial.
• Formulas are closed under composition with continuous

real-valued functions; moreover, if ϕ is a formula then so is
supx∈BN

ϕ or infx∈BN ϕ. The interpretation of these formulas in a
C*-algebra is standard.



The theory of C*-algebras

• Notice the if A is a C*-algebra, ā ∈ A and ϕ is a formula then
ϕA(ā) is a number. In particular, if ϕ is a sentence then ϕA ∈ R.

• Th(A), the theory of an algebra, is the function which to every
sentence ϕ assigns ϕA. A theory is determined by its zero set on
non-negative sentences.

• We say that a class of structures K is elementary if there is a set
of non-negative sentences T such that A ∈ K iff ϕA = 0 for all
ϕ ∈ T .

Theorem
The class of C*-algebras is an elementary class. In fact, in the
appropriate language it is a universal class.



The classification programme for nuclear C*-algebras

The Elliott programme
Determine which simple, separable, infinite-dimensional nuclear
C*-algebra are determined by their K-theory.

• For a C*-algebra A, there is an invariant called the Elliott
invariant which for the record is defined as:

Ell(A) = ((K0(A),K+
0 (A), [1A]),K1(A),Tr(A), ρA)

• There are other invariants which come up like KK-theory and the
Cuntz semi-group but I won’t focus on them.



Nuclear algebras

Definition
A C*-algebra A is called nuclear if for all C*-algebras B, A⊗̄B is
uniquely defined.
Examples:

• All abelian C*-algebras are nuclear.
• Mn(C) is nuclear but B(H) for an infinite-dimensional Hilbert

space H is not nuclear.
• The class of nuclear algebras is closed under tensor products

hence Mn(C(X )) is nuclear for any compact space X .
• The class of nuclear algebras is closed under inductive limits;

UHF (uniformly hyperfinite) algebras are limits of matrix algebras;
AF (approximately finite dimensional) algebras are limits of
finite-dimensional algebras.

• The class of nuclear algebras is not closed under ultraproducts
or even ultrapowers.



Nuclear algebras, cont’d

Definition
• A element of a C*-algebra A is said to be positive if it is of the

form a∗a for some a ∈ A.
• A linear map f : A→ B is positive if whenever a ∈ A is positive

then so is f (a).
• A linear map f : A→ B is completely positive if the induced map

from Mn(A) to Mn(B) is positive for all n.
• A map f is contractive if ‖f‖ ≤ 1.

Theorem (Stinespring)
For any completely positive map f : A→ B(H) there is a Hilbert
space K , *-homomorphism π : A→ B(K ) and V ∈ B(K ,H) such that
f (a) = Vπ(a)V ∗.



Nuclear algebras: good news and bad news

Definition
A C*-algebra A has the contractive positive approximation property
(CPAP) if for every ā ∈ A and ε > 0 there is an n and cpc maps
σ : A→ Mn(C) and τ : Mn(C)→ A such that ‖ā− τ(σ(ā))‖ < ε.

Theorem (Choi-Effros, Kirchberg)
A C*-algebra A is nuclear iff it satisfies the CPAP.

Theorem
There are countably many partial types such that a C*-algebra is
nuclear iff it omits all of these types.



AF algebras
• An AF algebra is an inductive limit of finite-dimensional

C*-algebras.
• All finite-dimensional C*-algebras are isomorphic to finite direct

sums of matrix algebras.
• Suppose that nk ≤ m. Define the map ϕk : Mn(C)→ Mm(C)

such that ϕk (A) = 
A . . . 0
0 A . . . 0

0 0
. . . 0

0 . . . A . . .
0 . . . 0


where A appears k times along the diagonal.

• If f is any *-homomorphism from Mn to Mm then f is unitarily
equivalent to ϕk for some k .

• Any *-homomorphism between AF algebras is understood via its
Bratteli diagram (see picture) which determines the
homomorphism up to unitary conjugation.



The definition of K0

Definition
For any C*-algebra A, consider the equivalence relation ∼ on
projections in A given by p ∼ q iff there is some v ∈ A, vpv∗ = q and
v∗qv = p.

Consider the (non-unital) *-homomorphism Φn : Mn(A)→ Mn+1(A)
defined by

a 7→
(

a 0
0 0

)
and let M∞ = limn Mn(A). We should really complete this ...

Let V (A) = Proj(M∞(A))/∼.

V (A) has an additive structure defined as follows: if p,q ∈ V (A) then
p ⊕ q is (

p 0
0 q

)



The definition of K0, cont’d

Definition
K0(A) is the Grothendieck group generated from (V (A),⊕) and
K+

0 (A) is the image of V (A) in K0(A); if A is unital then the constant
[1A] corresponds to the identity in A.
Examples:

• K0(Mn(C)) is (Z,N,n).
• If H is infinite-dimensional then K0(B(H)) is 0.
• Consider A = limn M2n (C) where the given morphisms are

M2n (C) ↪→ M2n+1 (C) such that

a 7→
(

a 0
0 a

)
Then K0(A) is the dyadic rationals with the unit associated to 1.



Properties of K0

• K0 is a functor from the category of C*-algebras with
*-homomorphisms into the category of ordered abelian groups.

• K0 commutes with direct sums and inductive limits.
• So for any AF algebra A, the underlying abelian group is the limit

of groups of the form Z n for various n’s.



Prototypical example of classification

Theorem (Elliott)
The class of AF algebras can be classified by K0 i.e. if A and B are
separable AF algebras and K0(A) ∼= K0(B) then A ∼= B.

A sketch of the proof:



Model theoretic versions of the Elliott conjecture

• What is the relationship between K0(A) and Th(A) when A is an
AF algebra?

• A classical result of Dixmier shows that non-unital separable
UHF algebras are classified by K0.

• In this case, K0 is an arbitrary rank 1, torsion-free abelian group.
• The isomorphism relation for such groups is known not to be

smooth in the sense of Borel equivalence relations.
• The theory of a C*-algebra is a smooth invariant and so Dixmier’s

result shows that K0 and not the theory captures isomorphism at
least for non-unital separable UHF algebras.

• Crazy conjecture: for AF algebras A and B, if K0(A) ≡ K0(B) then
A ≡ B.

• We don’t know of a single concrete example where A and B are
non-isomorphic, elementarily equivalent separable AF algebras.



Model theoretic versions of the Elliott conjecture

• Crazy conjecture 2: Simple, separable, infinite-dimensional,
unital nuclear algebras are classified by their Elliott invariant and
their first order continuous theory.

• The evidence for this is almost non-existent.
• The most general counter-examples to the form of the Elliott

conjecture which says that Ell(A) is a sufficient invariant are due
to Toms, Annals of Math, 2008.

• He gave continuum many simple separable nuclear C*-algebras
with identical Elliott invariant that were not isomorphic.

• He used something called the Cuntz semigroup to show they
were not isomorphic and in particular computed a number called
the radius of comparison - it was this value that differentiated the
algebras.

• We showed that the radius of comparison is known to the theory
of an algebra - it is preserved under ultraproducts and
elementary submodels.


