Revisiting classification theory from the 1970s

Bradd Hart McMaster University

Joint work with Ilijas Farah, Leonel Robert and Aaron Tikuisus

Oct. 22, 2013

Outline

- Basics of C*-algebras
- · Reminder about continuous model theory
- Basic model theory of operator algebras
- The Elliott classification problem
- The classification of AF algebras
- Some model theoretic variants

C*-algebra basics

Definition

A C*-algebra is a *-subalgebra *A* of the bounded linear operators B(H) on a complex Hilbert space *H* which is closed in the operator norm topology. Alternatively, a C*-algebra is a Banach *-algebra *A* which satisfies the C*-identity $||a^*a|| = ||a||^2$ for all $a \in A$.

The first sentence defines a concrete representation of a C*-algebra and the second gives an abstract definition.

Theorem (Gel'fand, Naimark, Sigal)

Every abstract C*-algebra has a concrete representation.

Examples:

- *M_n*(ℂ); in general, *B*(*H*); *C*₀(*X*) for any locally compact space *X* these form all the commutative C*-algebras.
- C*-algebras are closed under inductive limits where the relevant morphisms are *-homomorphisms.
- C*-algebras are closed under tensor products but ...

Continuous model theory of C*-algebras

- A C*-algebra can be thought of as a metric structure by introducing a sort for each ball of operator norm N ∈ N.
- One has function symbols for the sorted operations of +, · and * as well as the unary operations of multiplication by λ for every λ ∈ C. It is sometimes useful to consider an expanded language in which one has a function symbol for every *-polynomial (again properly sorted).
- The only relation symbol is the operator norm $\|\cdot\|$.
- The basic formulas of continuous logic which are relevant here are ||p(x
)|| where p(x
) is a *-polynomial.
- Formulas are closed under composition with continuous real-valued functions; moreover, if φ is a formula then so is $\sup_{x \in B_N} \varphi$ or $\inf_{x \in B_N} \varphi$. The interpretation of these formulas in a C*-algebra is standard.

The theory of C*-algebras

- Notice the if A is a C*-algebra, ā ∈ A and φ is a formula then φ^A(ā) is a number. In particular, if φ is a sentence then φ^A ∈ ℝ.
- *Th*(*A*), the theory of an algebra, is the function which to every sentence φ assigns φ^A. A theory is determined by its zero set on non-negative sentences.
- We say that a class of structures K is elementary if there is a set of non-negative sentences T such that A ∈ K iff φ^A = 0 for all φ ∈ T.

Theorem

The class of C*-algebras is an elementary class. In fact, in the appropriate language it is a universal class.

The classification programme for nuclear C*-algebras

The Elliott programme

Determine which simple, separable, infinite-dimensional nuclear C*-algebra are determined by their K-theory.

• For a C*-algebra *A*, there is an invariant called the Elliott invariant which for the record is defined as:

 $EII(A) = ((K_0(A), K_0^+(A), [1_A]), K_1(A), Tr(A), \rho_A)$

• There are other invariants which come up like KK-theory and the Cuntz semi-group but I won't focus on them.

Nuclear algebras

Definition

A C*-algebra A is called nuclear if for all C*-algebras B, $A \overline{\otimes} B$ is uniquely defined.

Examples:

- All abelian C*-algebras are nuclear.
- *M_n*(ℂ) is nuclear but *B*(*H*) for an infinite-dimensional Hilbert space *H* is not nuclear.
- The class of nuclear algebras is closed under tensor products hence $M_n(C(X))$ is nuclear for any compact space X.
- The class of nuclear algebras is closed under inductive limits; UHF (uniformly hyperfinite) algebras are limits of matrix algebras; AF (approximately finite dimensional) algebras are limits of finite-dimensional algebras.
- The class of nuclear algebras is not closed under ultraproducts or even ultrapowers.

Nuclear algebras, cont'd

Definition

- A element of a C*-algebra A is said to be positive if it is of the form a*a for some a ∈ A.
- A linear map *f* : *A* → *B* is positive if whenever *a* ∈ *A* is positive then so is *f*(*a*).
- A linear map *f* : *A* → *B* is completely positive if the induced map from *M_n*(*A*) to *M_n*(*B*) is positive for all *n*.
- A map *f* is contractive if $||f|| \le 1$.

Theorem (Stinespring)

For any completely positive map $f : A \to B(H)$ there is a Hilbert space K, *-homomorphism $\pi : A \to B(K)$ and $V \in B(K, H)$ such that $f(a) = V\pi(a)V^*$.

Definition

A C*-algebra *A* has the contractive positive approximation property (CPAP) if for every $\bar{a} \in A$ and $\epsilon > 0$ there is an *n* and cpc maps $\sigma : A \to M_n(\mathbb{C})$ and $\tau : M_n(\mathbb{C}) \to A$ such that $\|\bar{a} - \tau(\sigma(\bar{a}))\| < \epsilon$.

Theorem (Choi-Effros, Kirchberg)

A C*-algebra A is nuclear iff it satisfies the CPAP.

Theorem

There are countably many partial types such that a C*-algebra is nuclear iff it omits all of these types.

AF algebras

- An AF algebra is an inductive limit of finite-dimensional C*-algebras.
- All finite-dimensional C*-algebras are isomorphic to finite direct sums of matrix algebras.
- Suppose that *nk* ≤ *m*. Define the map φ_k : *M_n*(ℂ) → *M_m*(ℂ) such that φ_k(*A*) =

1	Α	 A			0	
	0	Α	•••		0	
	0 0 0	0	·		0	
	0			Α		
(0				0)

where A appears k times along the diagonal.

- If *f* is any *-homomorphism from *M_n* to *M_m* then *f* is unitarily equivalent to φ_k for some *k*.
- Any *-homomorphism between AF algebras is understood via its Bratteli diagram (see picture) which determines the homomorphism up to unitary conjugation.

The definition of K₀

Definition

For any C*-algebra *A*, consider the equivalence relation \sim on projections in *A* given by $p \sim q$ iff there is some $v \in A$, $vpv^* = q$ and $v^*qv = p$.

Consider the (non-unital) *-homomorphism $\Phi_n : M_n(A) \to M_{n+1}(A)$ defined by

$$\mathbf{a}\mapsto \left(egin{array}{cc} \mathbf{a} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array}
ight)$$

and let $M_{\infty} = \lim_{n \to \infty} M_n(A)$. We should really complete this ...

Let $V(A) = Proj(M_{\infty}(A))/\sim$.

V(A) has an additive structure defined as follows: if $p, q \in V(A)$ then $p \oplus q$ is

$$\left(\begin{array}{cc} p & 0 \\ 0 & q \end{array}\right)$$

The definition of K_0 , cont'd

Definition

 $K_0(A)$ is the Grothendieck group generated from $(V(A), \oplus)$ and $K_0^+(A)$ is the image of V(A) in $K_0(A)$; if A is unital then the constant $[1_A]$ corresponds to the identity in A.

Examples:

- *K*₀(*M_n*(ℂ)) is (ℤ, ℕ, *n*).
- If *H* is infinite-dimensional then $K_0(B(H))$ is 0.
- Consider $A = \lim_{n} M_{2^n}(\mathbb{C})$ where the given morphisms are $M_{2^n}(\mathbb{C}) \hookrightarrow M_{2^{n+1}}(\mathbb{C})$ such that

$$a\mapsto \left(egin{array}{cc} a & 0 \\ 0 & a \end{array}
ight)$$

Then $K_0(A)$ is the dyadic rationals with the unit associated to 1.

Properties of K₀

- *K*₀ is a functor from the category of C*-algebras with *-homomorphisms into the category of ordered abelian groups.
- K₀ commutes with direct sums and inductive limits.
- So for any AF algebra *A*, the underlying abelian group is the limit of groups of the form *Zⁿ* for various *n*'s.

Prototypical example of classification

Theorem (Elliott)

The class of AF algebras can be classified by K_0 i.e. if A and B are separable AF algebras and $K_0(A) \cong K_0(B)$ then $A \cong B$.

A sketch of the proof:

Model theoretic versions of the Elliott conjecture

- What is the relationship between *K*₀(*A*) and *Th*(*A*) when *A* is an AF algebra?
- A classical result of Dixmier shows that non-unital separable UHF algebras are classified by *K*₀.
- In this case, K_0 is an arbitrary rank 1, torsion-free abelian group.
- The isomorphism relation for such groups is known not to be smooth in the sense of Borel equivalence relations.
- The theory of a C*-algebra is a smooth invariant and so Dixmier's result shows that *K*₀ and not the theory captures isomorphism at least for non-unital separable UHF algebras.
- Crazy conjecture: for AF algebras A and B, if $K_0(A) \equiv K_0(B)$ then $A \equiv B$.
- We don't know of a single concrete example where A and B are non-isomorphic, elementarily equivalent separable AF algebras.

Model theoretic versions of the Elliott conjecture

- Crazy conjecture 2: Simple, separable, infinite-dimensional, unital nuclear algebras are classified by their Elliott invariant and their first order continuous theory.
- The evidence for this is almost non-existent.
- The most general counter-examples to the form of the Elliott conjecture which says that *Ell*(*A*) is a sufficient invariant are due to Toms, Annals of Math, 2008.
- He gave continuum many simple separable nuclear C*-algebras with identical Elliott invariant that were not isomorphic.
- He used something called the Cuntz semigroup to show they were not isomorphic and in particular computed a number called the radius of comparison it was this value that differentiated the algebras.
- We showed that the radius of comparison is known to the theory of an algebra it is preserved under ultraproducts and elementary submodels.