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10.1
COMPLEX
NUMBERS

In this section we shall review the definition of a complex
number and discuss the addition, subtraction, and
multiplication of such numbers. We will also consider matrices
with complex entries and explain how addition and
subtraction of complex numbers can be viewed as operations
on vectors.

Complex Numbers

Since  for every real number x, the equation  has no real solutions. To deal with this
problem, mathematicians of the eighteenth century introduced the “imaginary” number,

which they assumed had the property

but which otherwise could be treated like an ordinary number. Expressions of the form

(1)  

where a and b are real numbers, were called “complex numbers,” and these were manipulated
according to the standard rules of arithmetic with the added property that .

By the beginning of the nineteenth century it was recognized that a complex number 1 could be
regarded as an alternative symbol for the ordered pair

of real numbers, and that operations of addition, subtraction, multiplication, and division could be
defined on these ordered pairs so that the familiar laws of arithmetic hold and . This is the
approach we will follow.

DEFINIT ION

A complex number is an ordered pair of real numbers, denoted either by  or by ,
where .
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EXAMPLE 1   Two Notations for a Complex Number

Some examples of complex numbers in both notations are as follows:

Ordered Pair Equivalent Notation

(3, 4)

(−1, 2)

(0, 1)

(2, 0)

(4, −2)

For simplicity, the last three complex numbers would usually be abbreviated as

Geometrically, a complex number can be viewed as either a point or a vector in the -plane (Figure
10.1.1).
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Figure 10.1.1   

EXAMPLE 2   Complex Numbers as Points and as Vectors

Some complex numbers are shown as points in Figure 10.1.2a and as vectors in Figure 10.1.2b.

Figure 10.1.2   

The Complex Plane
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Sometimes it is convenient to use a single letter, such as z, to denote a complex number. Thus we
might write

The real number a is called the real part of z, and the real number b is called the imaginary part of z.
These numbers are denoted by  and , respectively. Thus

When complex numbers are represented geometrically in an -coordinate system, the x-axis is called
the real axis, the y-axis is called the imaginary axis, and the plane is called the complex plane
(Figure 10.1.3). The resulting plot is called an Argand diagram.

Figure 10.1.3   
Argand diagram.

Operations on Complex Numbers

Just as two vectors in  are defined to be equal if they have the same components, so we define two
complex numbers to be equal if their real parts are equal and their imaginary parts are equal:

DEFINIT ION

Two complex numbers,  and , are defined to be equal, written

if  and .

If , then the complex number  reduces to , which we write simply as a. Thus, for any
real number a,

so the real numbers can be regarded as complex numbers with an imaginary part of zero.
Geometrically, the real numbers correspond to points on the real axis. If we have , then 
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reduces to , which we usually write as . These complex numbers, which correspond to points
on the imaginary axis, are called pure imaginary numbers.

Just as vectors in  are added by adding corresponding components, so complex numbers are added
by adding their real parts and adding their imaginary parts:

(2)  

The operations of subtraction and multiplication by a real number are also similar to the
corresponding vector operations in :

(3)  

(4)  

Because the operations of addition, subtraction, and multiplication of a complex number by a real
number parallel the corresponding operations for vectors in , the familiar geometric interpretations
of these operations hold for complex numbers (see Figure 10.1.4).
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Figure 10.1.4   

It follows from 4 that  (verify), so we denote  as  and call it the negative of
z.

EXAMPLE 3   Adding, Subtracting, and Multiplying by Real Numbers

If  and , find , , , and .

Solution

So far, there has been a parallel between complex numbers and vectors in . However, we now
define multiplication of complex numbers, an operation with no vector analog in . To motivate the
definition, we expand the product

following the usual rules of algebra but treating  as −1. This yields

which suggests the following definition:

(5)  

EXAMPLE 4   Multiplying Complex Numbers
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We leave it as an exercise to verify the following rules of complex arithmetic:

These rules make it possible to multiply complex numbers without using Formula 5 directly.
Following the procedure used to motivate this formula, we can simply multiply each term of  by
each term of , set , and simplify.

EXAMPLE 5   Multiplication of Complex Numbers

Remark   Unlike the real numbers, there is no size ordering for the complex numbers. Thus, the order
symbols <, ≤, >, and ≥ are not used with complex numbers.

Now that we have defined addition, subtraction, and multiplication of complex numbers, it is possible
to add, subtract, and multiply matrices with complex entries and to multiply a matrix by a complex
number. Without going into detail, we note that the matrix operations and terminology discussed in
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Chapter 1 carry over without change to matrices with complex entries.

EXAMPLE 6   Matrices with Complex Entries

If

then

Exercise Set   10.1

 Click here for Just Ask!

1.  
In each part, plot the point and sketch the vector that corresponds to the given complex number.

(a)  

(b)  −4
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(c)  

(d)  

2.  
Express each complex number in Exercise 1 as an ordered pair of real numbers.

3.  
In each part, use the given information to find the real numbers x and y.

(a)  

(b)  

4.  
Given that  and , find

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

5.  
In each part, solve for z.
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(a)  

(b)  

(c)  

6.  
In each part, sketch the vectors , , , and .

(a)  , 

(b)  , 

7.  
In each part, sketch the vectors z and .

(a)  , 

(b)  , 

(c)  , 

8.  
In each part, find real numbers  and  that satisfy the equation.

(a)  
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(b)  

9.  
In each part, find , , and .

(a)  , 

(b)  , 

(c)  , 

10.  
Given that  and , find

(a)  

(b)  

(c)  

(d)  

In Exercises 11–18 perform the calculations and express the result in the form .

11.  

12.  
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13.  

14.  

15.  

16.  

17.  

18.  

19.  
Let

Find

(a)  

(b)  

(c)  

(d)  

20.  
Let
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Find

(a)  

(b)  

(c)  

(d)  

21.  
Show that

(a)  

(b)  

22.  
In each part, solve the equation by the quadratic formula and check your results by substituting
the solutions into the given equation.

(a)  

(b)  

23.  
(a)  Show that if n is a positive integer, then the only possible values for  are 1, −1, i, and 

.

(b)  Find .
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24.  
Prove: If , then  or .

25.  
Use the result of Exercise 24 to prove: If  and , then .

26.  
Prove that for all complex numbers , , and ,

(a)  

(b)  

27.  
Prove that for all complex numbers , , and ,

(a)  

(b)  

28.  
Prove that  for all complex numbers , , and .

29.  
In quantum mechanics the Dirac matrices are

(a)  Prove that .
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30.  
Describe the set of all complex numbers  such that . Show that if ,  are
such numbers, then so is .

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.
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10.2
DIVISION OF
COMPLEX
NUMBERS

In the last section we defined multiplication of complex
numbers. In this section we shall define division of complex
numbers as the inverse of multiplication.

We begin with some preliminary ideas.

Complex Conjugates

If  is any complex number, then the complex conjugate of z (also called the conjugate of z)
is denoted by the symbol  (read “ z bar” or “ z conjugate”) and is defined by

In words,  is obtained by reversing the sign of the imaginary part of z. Geometrically,  is the
reflection of z about the real axis (Figure 10.2.1).

Figure 10.2.1   
The conjugate of a complex number.

EXAMPLE 1   Examples of Conjugates
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Remark   The last line in Example 1 illustrates the fact that a real number is the same as its conjugate.
More precisely, it can be shown (Exercise 22) that  if and only if z is a real number.

If a complex number z is viewed as a vector in , then the norm or length of the vector is called the
modulus of z. More precisely:

DEFINIT ION

The modulus of a complex number , denoted by , is defined by

(1)  

If , then  is a real number, and

so the modulus of a real number is simply its absolute value. Thus the modulus of z is also called the
absolute value of z.
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Paul Adrien Maurice Dirac (1902–1984) was a British theoretical physicist who devised a new
form of quantum mechanics and a theory that predicted electron spin and the existence of a
fundamental atomic particle called a positron. He received the Nobel Prize for physics in 1933 and
the medal of the Royal Society in 1939.

EXAMPLE 2   Modulus of a Complex Number

Find  if .

Solution

From 1, with  and , .

The following theorem establishes a basic relationship between  and .

THEOREM 10 .2 .1

For any complex number z,
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Proof   If , then

Division of Complex Numbers

We now turn to the division of complex numbers. Our objective is to define division as the inverse of
multiplication. Thus, if , then our definition of  should be such that

(2)  

Our procedure will be to prove that 2 has a unique solution for z if , and then to define  to
be this value of z. As with real numbers, division by zero is not allowed.

THEOREM 10 .2 .2

If , then Equation 2 has a unique solution, which is

(3)  

Proof   Let , , and . Then 2 can be written as

or

or, on equating real and imaginary parts,
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or

(4)  

Since , it follows that  and  are not both zero, so

Thus, by Cramer's rule (Theorem 2.1.4), system 4 has the unique solution

Therefore,

Thus, for , we define

(5)  

Remark   To remember this formula, multiply the numerator and denominator of  by :
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EXAMPLE 3   Quotient in the Form 

Express

in the form .

Solution

From 5 with  and ,

Alternative Solution

As in the remark above, multiply numerator and denominator by the conjugate of the denominator:

Systems of linear equations with complex coefficients arise in various applications. Without going
into detail, we note that all the results about linear systems studied in Chapters 1 and 2 carry over
without change to systems with complex coefficients. Note, however, that a few results studied in
other chapters will change for complex matrices.

EXAMPLE 4   A Linear System with Complex Coefficients

Use Cramer's rule to solve

Solution
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Thus the solution is , .

We conclude this section by listing some properties of the complex conjugate that will be useful in
later sections.

THEOREM 10 .2 .3

Properties of the Conjugate

For any complex numbers z, , and :

(a)  

(b)  

(c)  

(d)  

(e)  

We prove (a) and leave the rest as exercises.

Division of Complex Numbers http://edugen.wileyplus.com/edugen/courses/crs1479/pc/c10/...

7 of 17 12-02-28 10:07 AM



Proof (a)   Let  and ; then

Remark   It is possible to extend part (a) of Theorem 10.2.3 to n terms and part (c) to n factors. More
precisely,

Exercise Set   10.2

 Click here for Just Ask!

1.  
In each part, find .

(a)  

(b)  

(c)  

(d)  

(e)  
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(f)  

2.  
In each part, find .

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  

3.  
Verify that  for

(a)  

(b)  

(c)  

4.  
Given that  and , find

(a)  
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(b)  

(c)  

(d)  

(e)  

(f)  

5.  
In each part, find .

(a)  

(b)  

(c)  

6.  
Given that  and , find

(a)  

(b)  

(c)  
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(d)  

In Exercises 7–14 perform the calculations and express the result in the form .

7.  

8.  

9.  

10.  

11.  

12.  

13.  

14.  

15.  
In each part, solve for z.

(a)  

(b)  
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16.  
Use Theorem 10.2.3 to prove the following identities:

(a)  

(b)  

(c)  

17.  
In each part, sketch the set of points in the complex plane that satisfies the equation.

(a)  

(b)  

(c)  

(d)  

18.  
In each part, sketch the set of points in the complex plane that satisfies the given condition(s).

(a)  

(b)  

(c)  

(d)  
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19.  
Given that , find

(a)  

(b)  

(c)  

(d)  

20.  
(a)  Show that if n is a positive integer, then the only possible values for  are 1, −1, i,

and .

(b)  Find .

Hint  See Exercise 23(b) of Section 10.1.

21.  
Prove:

(a)  

(b)  

22.  
Prove:  if and only if z is a real number.

23.  
Given that  and , find
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(a)  

(b)  

24.  
Prove: If , then z is either real or pure imaginary.

25.  
Prove that .

26.  
Prove:

(a)  

(b)  

(c)  

(d)  

27.  
(a)  Prove that .

(b)  (b) Prove that if n is a positive integer, then .

(c)  Is the result in part (b) true if n is a negative integer? Explain.

In Exercises 28–31 solve the system of linear equations by Cramer's rule.
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28.  

29.  

30.  

31.  

In Exercises 32 and 33 solve the system of linear equations by Gauss–Jordan elimination.

32.  

33.  

34.  
Solve the following system of linear equations by Gauss–Jordan elimination.

35.  
In each part, use the formula in Theorem 1.4.5 to compute the inverse of the matrix, and check
your result by showing that .

(a)  

(b)  
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36.  
Let  be a polynomial for which the coefficients , , ,
…,  are real. Prove that if z is a solution of the equation , then so is .

37.  
Prove: For any complex number z,  and .

38.  
Prove that

Hint  Let  and use the fact that .

39.  
In each part, use the method of Example 4 in Section 1.5 to find , and check your result by
showing that .

(a)  

(b)  

40.  
Show that . Discuss the geometric interpretation of the result.

41.  
(a)  If  and , find  and interpret the result geometrically.

(b)  Use part (a) to show that the complex numbers 12, , and  are vertices of a right
triangle.
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42.  
Use Theorem 10.2.3 to show that if the coefficients a, b, and c in a quadratic polynomial are real,
then the solutions of the equation  are complex conjugates. What can you
conclude if a, b, and c are complex?

Copyright © 2005 John Wiley & Sons, Inc. All rights reserved.
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10.3
POLAR FORM OF A
COMPLEX NUMBER

In this section we shall discuss a way to represent complex
numbers using trigonometric properties. Our work will lead to
an important formula for powers of complex numbers and to a
method for finding nth roots of complex numbers.

Polar Form

If  is a nonzero complex number, , and  measures the angle from the positive real
axis to the vector z, then, as suggested by Figure 10.3.1,

(1)  

so that  can be written as  or

(2)  

This is called a polar form of z.

Argument of a Complex Number

The angle  is called an argument of z and is denoted by

The argument of z is not uniquely determined because we can add or subtract any multiple of  from
 to produce another value of the argument. However, there is only one value of the argument in

radians that satisfies

This is called the principal argument of z and is denoted by
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Figure 10.3.1   

EXAMPLE 1   Polar Forms

Express the following complex numbers in polar form using their principal arguments:

(a)  

(b)  

Solution (a)

The value of r is

and since  and , it follows from 1 that

so  and . The only value of  that satisfies these relations and meets the
requirement  is  (see Figure 10.3.2a). Thus a polar form of z is

Solution (b)

The value of r is
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and since , , it follows from 1 that

so  and . The only value of  that satisfies these relations and meets
the requirement  is  (Figure 10.3.2b). Thus, a polar form of z is

Figure 10.3.2   

Multiplication and Division Interpreted Geometrically

We now show how polar forms can be used to give geometric interpretations of multiplication and
division of complex numbers. Let

Multiplying, we obtain

Recalling the trigonometric identities

we obtain

(3)  

which is a polar form of the complex number with modulus  and argument . Thus we have
shown that
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(4)  

and

(Why?) In words, the product of two complex numbers is obtained by multiplying their moduli and
adding their arguments (Figure 10.3.3).

We leave it as an exercise to show that if , then

(5)  

from which it follows that

and

In words, the quotient of two complex numbers is obtained by dividing their moduli and subtracting
their arguments (in the appropriate order).

Figure 10.3.3   
The product of two complex numbers.

EXAMPLE 2   A Quotient Using Polar Forms

Let

Polar forms of these complex numbers are
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(verify) so that from 3,

and from 5,

As a check, we calculate  and  directly without using polar forms for  and :

which agrees with our previous results.

The complex number i has a modulus of 1 and an argument of , so the product  has the
same modulus as z, but its argument is 90° greater than that of z. In short, multiplying z by i rotates z
counterclockwise by 90° (Figure 10.3.4).

Figure 10.3.4   
Multiplying by i rotates z counterclockwise by 90°.

DeMoivre's Formula

If n is a positive integer and , then from Formula 3,

or

(6)  
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Moreover, 6 also holds for negative integers if  (see Exercise 23).

In the special case where , we have , so 6 becomes

(7)  

which is called DeMoivre's formula. Although we derived 7 assuming n to be a positive integer, it
will be shown in the exercises that this formula is valid for all integers n.

Finding nth Roots

We now show how DeMoivre's formula can be used to obtain roots of complex numbers. If n is a
positive integer and z is any complex number, then we define an nth root of z to be any complex
number w that satisfies the equation

(8)  

We denote an nth root of z by . If , then we can derive formulas for the nth roots of z as
follows. Let

If we assume that w satisfies 8, then it follows from 6 that

(9)  

Comparing the moduli of the two sides, we see that  or

where  denotes the real positive nth root of r. Moreover, in order to have the equalities
 and  in 9, the angles  and  must either be equal or differ by a multiple

of . That is,

Thus the values of  that satisfy 8 are given by

Although there are infinitely many values of k, it can be shown (see Exercise 16) that , 1, 2, …,
 produce distinct values of w satisfying 8 but all other choices of k yield duplicates of these.

Therefore, there are exactly n different nth roots of , and these are given by

(10)  
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Abraham DeMoivre (1667–1754) was a French mathematician who made important
contributions to probability, statistics, and trigonometry. He developed the concept of statistically
independent events, wrote a major and influential treatise on probability, and helped transform
trigonometry from a branch of geometry into a branch of analysis through his use of complex
numbers. In spite of his important work, he barely managed to eke out a living as a tutor and a
consultant on gambling and insurance.
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EXAMPLE 3   Cube Roots of a Complex Number

Find all cube roots of −8.

Solution

Since −8 lies on the negative real axis, we can use  as an argument. Moreover,
, so a polar form of −8 is

From 10 with , it follows that

Thus the cube roots of −8 are

As shown in Figure 10.3.5, the three cube roots of −8 obtained in Example 3 are equally spaced 
radians  apart around the circle of radius 2 centered at the origin. This is not accidental. In
general, it follows from Formula 10 that the nth roots of z lie on the circle of radius  and
are equally spaced  radians apart. (Can you see why?) Thus, once one nth root of z is found, the
remaining  roots can be generated by rotating this root successively through increments of 
radians.
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Figure 10.3.5   
The cube roots of −8.

EXAMPLE 4   Fourth Roots of a Complex Number

Find all fourth roots of 1.

Solution

We could apply Formula 10. Instead, we observe that  is one fourth root of 1, so the remaining
three roots can be generated by rotating this root through increments of  radians .
From Figure 10.3.6, we see that the fourth roots of 1 are

Figure 10.3.6   
The fourth roots of 1.
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Complex Exponents

We conclude this section with some comments on notation.

In more detailed studies of complex numbers, complex exponents are defined, and it is shown that

(11)  

where e is an irrational real number given approximately by …. (For readers who have
studied calculus, a proof of this result is given in Exercise 18.)

It follows from 11 that the polar form

can be written more briefly as

(12)  

EXAMPLE 5   Expressing a Complex Number in Form 12

In Example 1 it was shown that

From 12 this can also be written as

It can be proved that complex exponents follow the same laws as real exponents, so if

are nonzero complex numbers, then

But these are just Formulas 3 and 5 in a different notation.

We conclude this section with a useful formula for  in polar notation. If
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then

(13)  

Recalling the trigonometric identities

we can rewrite 13 as

or, equivalently,

(14)  

In the special case where , the polar form of z is , and 14 yields the formula

(15)  

Exercise Set   10.3

 Click here for Just Ask!

1.  
In each part, find the principal argument of z.

(a)  

(b)  

(c)  

(d)  

(e)  
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(f)  

2.  
In each part, find the value of  that satisfies the given condition.

(a)  

(b)  

(c)  

3.  
In each part, express the complex number in polar form using its principal argument.

(a)  

(b)  −4

(c)  

(d)  

(e)  

(f)  

4.  
Given that  and , find a polar form of

(a)  
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5.  
Express , , and  in polar form, and use your results to find .
Check your results by performing the calculations without using polar forms.

6.  
Use Formula 6 to find

(a)  

(b)  

(c)  

(d)  

7.  
In each part, find all the roots and sketch them as vectors in the complex plane.

(a)  

(b)  

(c)  

(d)  

(e)  

(f)  
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8.  
Use the method of Example 4 to find all cube roots of 1.

9.  
Use the method of Example 4 to find all sixth roots of 1.

10.  
Find all square roots of  and express your results in polar form.

11.  
Find all solutions of the equation .

12.  
Find all solutions of the equation  and use your results to factor  into two
quadratic factors with real coefficients.

13.  
It was shown in the text that multiplying z by i rotates z counterclockwise by 90°. What is the
geometric effect of dividing z by i?

14.  
In each part, use 6 to calculate the given power.

(a)  

(b)  

15.  
In each part, find  and .

(a)  

(b)  

(c)  
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(d)  

16.  
(a)  Show that the values of  in Formula 10 are all different.

(b)  Show that integer values of k other than , 1, 2, …,  produce values of  that
are duplicates of those in Formula 10.

17.  
Show that Formula 7 is valid if  or n is a negative integer.

18.  (For Readers Who Have Studied Calculus)  To prove Formula 11, recall that the Maclaurin
series for  is

(a)  By substituting  in this series and simplifying, show that

(b)  Use the result in part (a) to obtain Formula 11.

19.  
Derive Formula 5.

20.  
When  and , Equation 7 gives

Use these two equations to obtain trigonometric identities for , , , and .
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21.  
Use Formula 11 to show that

22.  
Show that if , then .

23.  
Show that Formula 6 is valid for negative integer exponents if .
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 Answers to Selected Questions
 from Elementary Linear Algebra: Applications Version, 9th ed.

Chapter 10.1     

    #5.   a) 2 + 3i,    b)  −1−2i,   c) −2+9i,         #11.  76 − 88i,         #17.  0,

    #19.   
1 6 3 7 3 2 6 5 3 3 2 5 9 12 2

, , ,
3 8 3 12 3 5 13 3 9 5 13 2 18 2 13

i i i i i i i i

i i i i i i i i

+ − + − + + + + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + − + − − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

a) b) c) d)

    #22.  −1 ± i,  
1 3

2 2
i±

Chapter 10.2     

    #9. 
7 24

625 625
i− −         #11.  

1 3 1 3

4 4
i

− +
+        #15.  a)−1−2i,   b)  −3/25−4i /25, 

    #19. a) −y,  b) −x,  c) y,  d) x,        #33. (1 + i)t, 2t,     #35. 
2 0 1

,
1 2

i

i i i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

a) b)

Chapter 10.3

    #3.   ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

2 2
4 4 3 3

3 3
4 4 6 6

2 cos sin , 4 cos sin ,

5 2 cos sin , 12 cos sin

3 2 cos sin 4 cos sin

i i

i i

i i

π π

π π

π π

π π

π π

π π

+ +

+ +

− + − − + −

a) b)

c) d)

e) f)

    #5.  /3 /6 1 2
1 2 3

3

, 2 , 2 , 1i i i z z
z e z e z e

z

π π π−= = = =

    #7. b) 6 2 6 2
,

2 2 2 2
i i+ − −                    #11.  ±2,  ±2i

          c)  3 3 3 3 3 3
3, ,

2 2 2 2
i i− + −

    #15. a)  Re(z) = −3,  Im(z) = 0

            b)  Re(z) = −3,  Im(z) =0

            c)  Re(z) =   0,   Im(z) = 2−

            d)  Re(z) = −3,  Im(z) = 0


