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The transformation TA

Definition
Suppose that A is an m × n matrix then TA is a function with
domain Rn and range Rm, usually written

TA : Rn → Rm

defined by: for all x ∈ Rn, TA(x) = Ax .

Theorem
If A is an m × n matrix, x , y ∈ Rn and λ ∈ R then

1 TA(x + y) = TA(x) + TA(y) and
2 TA(λx) = λTA(x)

Linear functions
Any function from Rn to Rm which the two properties from the
theorem are called linear functions.
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Linear functions

Suppose that T : Rn → Rm is any linear function.
Remember that if x ∈ Rn then x = λ1e1 + . . .+ λnen for
some λ1, . . . , λn.
So T (x) = λ1T (e1) + . . .+ λnT (en).
This says that every linear function is determined by its
values on e1, . . . ,en.
Consider the matrix

A = (T (e1)|T (e2)| . . . |T (en))

We see that T = TA.
Conclusion: All linear functions from Rn to Rm are of the
form TA for some m × n matrix A.
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Matrix multiplication and composition of functions

The composition of two linear functions is a linear function.
If A is m × k and B is k × n then we can form TA(TB) - the
composition of these two functions and it will be a linear
function.
By what was said on the previous slide, this linear function
will be TC for some C; what is C?
C = AB.
So matrix multiplication is what you get when you compose
linear functions.
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Determinants

The goal
To every square matrix A we wish to assign a number
called the determinant of A and written det(A).
We will use this to detect invertibility: det(A) 6= 0 iff A is
invertible.

Definition
For a square matrix A, we define

The ij minor of A, Mij , is the determinant of the square
matrix obtained from A by deleting the i th row and j th

column of A.
The ij cofactor of A is (−1)i+jMij .
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Cofactor expansion

Definition
Suppose that A is an n × n square matrix.

The cofactor expansion along the i th row is

ai1Ci1 + ai2Ci2 + . . .+ ainCin

The cofactor expansion along the j th column is

a1jC1j + a2jC2j + . . .+ anjCnj

Theorem
Any cofactor expansion of a square matrix A, along any row or
any column, always yields the same number and we call that
number the determinant of A.
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Some easy facts

If A is a triangular matrix then det(A) is the product of the
diagonal entries.
If a square matrix has a row or column which is entirely
zero then its determinant is 0.
If A is a square matrix then det(A) = det(AT ).
If B is a square matrix obtained by multiplying a row or
column of A by k then det(B) = kdet(A).
If B is obtained from A by exchanging two rows then
det(B) = −det(A).
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