Mathematics 2R3 Test 3

Dr. Hart Nov. 27, 2019

Name: SO L‘*‘-—e"a’\-‘%

Student No.:

The test is 50 minutes long.

The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.

You are responsible for ensuring that your copy of the paper is complete. Bring any discrep-
ancies to the attention of the invigilator.

Attempt all questions and write your answers in the space provided.

Marks are indicated next to each question; the total number of marks is 25.

You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no eommunication
capability); no other aids are not permitted.

Use pen to write your test. If you use a pencil, your test will not be accepted for regrading

(if needed).
Good Luck!
Score
Question 1 2 3 4 5 Total
Points ) 5 3 3 5 25
Score
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1. {5 marks) Put your answer in the space provided for each part.

(a) If an n X n complex matrix A satisfies Az - Ay = x -y for all z,y € C™ then A is unitary.
True or False.
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(b) Compute the inverse of
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(c) If A is similar to B then B is similar to A. True or False.
T
{(d) The eigenvalues of a normal matrix are real. True or False.
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(e) The matrix

is unitary. True or False.
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Math 2R3, Test 3, Nov. 27, 2019 Student # Initials Page 3

2. (5 marks) Suppose that V is the subspace of differentiable functions on the real numbers
generated by {1,z,e *,ze *}. Consider the linear operator D on V defined by D(f) = f/,
the derivative of f. Display the matrix for D relative to the basis B = {1,z,e %, ze *}.
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3. Suppose that T: P, — P, is the linear transformation given by

T(p(z)) = p(z +1)
where P, is the vector space of polynomials with complex coefficients of degree at most 2.

(a} (3 marks) Compute the determinant of T'. |
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(b) (2 marks) Determine the eigenvalues and eigenvectors for T
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4. Suppose that A is the Hermitian matrix
: 0=
A=19o -1 0
: 03
which has eigenvalues 1,0 and —1 and corresponding eigenvectors
1 ) 0
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z 1 0
(a) (3 marks) Determine a matrix P which unitarily diagonalizes A.
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5. (a) (2 marks) For a complex matrix A, define what it means for A to be normal.

I+ A 3 a~ nxa wwf(e.x moty ix ~Houn /4- 3 nofm«./(
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(b) (3 marks) Prove that if an n x n complex matrix A is unitarily diagonalizable and has
real eigenvalues then A is Hermitian.
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THE END



