## Mathematics 2R3 Test 3

| Dr. Hart         | Nov. 27, 20 |
|------------------|-------------|
| Name: Solutions. |             |
| Student No.:     |             |

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

## Good Luck!

## Score

| Question | 1 . | 2 | 3 | 4 | 5 | Total |
|----------|-----|---|---|---|---|-------|
| Points   | - 5 | 5 | 5 | 5 | 5 | 25    |
| Score    |     |   |   |   |   |       |

2

- 1. (5 marks) Put your answer in the space provided for each part.
  - (a) If an  $n \times n$  complex matrix A satisfies  $Ax \cdot Ay = x \cdot y$  for all  $x, y \in C^n$  then A is unitary. True or False.

T

(b) Compute the inverse of

$$\begin{pmatrix} 0 & 1 & 0 \\ \frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \end{pmatrix}.$$

(010元)

(c) If A is similar to B then B is similar to A. True or False.

T

(d) The eigenvalues of a normal matrix are real. True or False.

F

(e) The matrix

$$\left( \begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right)$$

is unitary. True or False.

T

i washing you it you are and a second

The second of th

2. (5 marks) Suppose that V is the subspace of differentiable functions on the real numbers generated by  $\{1, x, e^{-x}, xe^{-x}\}$ . Consider the linear operator D on V defined by D(f) = f', the derivative of f. Display the matrix for D relative to the basis  $B = \{1, x, e^{-x}, xe^{-x}\}.$ 

$$D(1) = 0$$
,  $D(x) = 1$ ,  $D(e^{-x}) = -e^{-x}$ ,  $D(xe^{-x}) = e^{-x} - xe^{-x}$ 

so 
$$[D]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

3. Suppose that  $T: P_2 \to P_2$  is the linear transformation given by

$$T(p(x)) = p(x+1)$$

where  $P_2$  is the vector space of polynomials with complex coefficients of degree at most 2.

(a) (3 marks) Compute the determinant of T.

(a) (3 marks) Compute the determinant of 
$$T$$
.  
If  $B = \{1, \times, \times^2\}$  Hen  $T(1) = 1$ ,  $T(x) = x+1$ ,  $T(x^2) = (x+1)^2$   
 $= x^2 + 2x + 1$ 

So 
$$[T]_{B} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
 and  $det(T) = det(\Sigma T J_{B}) = 1$ 

and 
$$det(T) = det(\xi T J_g) = 1$$

(b) (2 marks) Determine the eigenvalues and eigenvectors for T.

By observation From as, the only eigenvalue is

The eigenvectors for I have B coordinates satisfying.

$$\begin{pmatrix} 0 & -1 & -1 \\ 0 & 0 & -2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \quad \text{so} \quad b = c = 0 \quad \text{and} \quad \text{the}$$

eigenvectors are the constant polys p(x) = a for a et.

4. Suppose that A is the Hermitian matrix

$$A=\left(egin{array}{cccc} rac{1}{2} & 0 -rac{i}{2} \ 0 & -1 & 0 \ rac{i}{2} & 0 & rac{1}{2} \end{array}
ight)$$

which has eigenvalues 1,0 and -1 and corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix}, \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix}$$
 and  $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ 

(a) (3 marks) Determine a matrix P which unitarily diagonalizes A.

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$
 so 
$$P^*AP = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} = D.$$

(b) (2 marks) Compute 
$$A^{100}$$
.

$$A = PDP^* \quad \text{so} \quad A^{100} \quad PD^{100}P^* \quad \text{and} \quad D^{00} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

continued ...

6

5. (a) (2 marks) For a complex matrix A, define what it means for A to be normal.

Student #

If A is an nxn complex matrix then A is normal if AA\* = A\*A.

(b) (3 marks) Prove that if an  $n \times n$  complex matrix A is unitarily diagonalizable and has real eigenvalues then A is Hermitian.

Let U be an unitary matrix s.t. U\*AU = D where Dis diagnal. Morcover, since A has real eigenvalues then Dis a real matrix. Then A = UDU\*. To see that A is Hermitian, show A\*=A.

A\*= (UDU\*)\*= (U\*)\*D\*U\* = UDU\* smee Dis real. = A.

So A is Hermitian.