

# Mathematics 2R3 Test 3

Dr. Hart

Nov. 27, 2019

Name: \_\_\_\_\_

Student No.: \_\_\_\_\_

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

**Good Luck!**

## Score

| Question | 1 | 2 | 3 | 4 | 5 | Total |
|----------|---|---|---|---|---|-------|
| Points   | 5 | 5 | 5 | 5 | 5 | 25    |
| Score    |   |   |   |   |   |       |

continued . . .

1. (5 marks) Put your answer in the space provided for each part.

(a) If an  $n \times n$  complex matrix  $A$  satisfies  $Ax \cdot Ay = x \cdot y$  for all  $x, y \in C^n$  then  $A$  is unitary.  
True or False.

---

(b) Compute the inverse of

$$\begin{pmatrix} 0 & 1 & 0 \\ \frac{i}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{i}{\sqrt{2}} \end{pmatrix}.$$

---

(c) If  $A$  is similar to  $B$  then  $B$  is similar to  $A$ . True or False.

---

(d) The eigenvalues of a normal matrix are real. True or False.

---

(e) The matrix

$$\begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

is unitary. True or False.

---

continued . . .

2. (5 marks) Suppose that  $V$  is the subspace of differentiable functions on the real numbers generated by  $\{1, x, e^{-x}, xe^{-x}\}$ . Consider the linear operator  $D$  on  $V$  defined by  $D(f) = f'$ , the derivative of  $f$ . Display the matrix for  $D$  relative to the basis  $B = \{1, x, e^{-x}, xe^{-x}\}$ .

3. Suppose that  $T: P_2 \rightarrow P_2$  is the linear transformation given by

$$T(p(x)) = p(x + 1)$$

where  $P_2$  is the vector space of polynomials with complex coefficients of degree at most 2.

- (a) (3 marks) Compute the determinant of  $T$ .

- (b) (2 marks) Determine the eigenvalues and eigenvectors for  $T$ .

4. Suppose that  $A$  is the Hermitian matrix

$$A = \begin{pmatrix} \frac{1}{2} & 0 & -\frac{i}{2} \\ 0 & -1 & 0 \\ \frac{i}{2} & 0 & \frac{1}{2} \end{pmatrix}$$

which has eigenvalues 1, 0 and  $-1$  and corresponding eigenvectors

$$\begin{pmatrix} 1 \\ 0 \\ i \end{pmatrix}, \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

(a) (3 marks) Determine a matrix  $P$  which unitarily diagonalizes  $A$ .

(b) (2 marks) Compute  $A^{100}$ .

5. (a) (2 marks) For a complex matrix  $A$ , define what it means for  $A$  to be normal.

(b) (3 marks) Prove that if an  $n \times n$  complex matrix  $A$  is unitarily diagonalizable and has real eigenvalues then  $A$  is Hermitian.