

Orthogonal matrices

Definition

A square matrix A is called orthogonal if $A^{-1} = A^T$.

Theorem

The following are equivalent for an $n \times n$ matrix A :

- 1 *A is orthogonal.*
- 2 *The rows of A form an orthonormal basis for R^n .*
- 3 *The columns of A form an orthonormal basis for R^n .*

Orthogonal matrices, cont'd

Theorem

- *The inverse of an orthogonal matrix is orthogonal.*
- *A product of orthogonal matrices is orthogonal.*
- *The determinant of an orthogonal matrix is ± 1 .*

Theorem

If A is $n \times n$ then the following are equivalent:

- 1 *A is orthogonal.*
- 2 *$||Ax|| = ||x||$ for all $x \in \mathbb{R}^n$.*
- 3 *$Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$.*

Theorem

If P is a transition matrix from one orthonormal basis to another then P is orthogonal.

Orthogonal diagonalization

Definition

If P diagonalizes A and P is orthogonal then A is said to be orthogonally diagonalizable. That is, there is an orthogonal matrix P such that $P^{-1}AP$ is diagonal.

Theorem

If A is an $n \times n$ real matrix then the following are equivalent:

- 1 A is orthogonally diagonalizable.
- 2 A has an orthonormal set of n eigenvectors.
- 3 A is symmetric.

Symmetric matrices

Theorem

If A is a symmetric matrix then

- 1 *The eigenvalues of A are all real numbers.*
- 2 *Eigenvectors from different eigenspaces are orthogonal.*

Definition

- 1 An $n \times n$ complex matrix A is Hermitian if $A^* = A$;
remember that $A^* = \overline{A^T}$, the conjugate of the transpose.
- 2 An $n \times n$ complex matrix U is called unitary if $A^* = A^{-1}$.

Theorem

If A is a Hermitian matrix then

- 1 *The eigenvalues of A are all real numbers.*
- 2 *Eigenvectors from different eigenspaces are orthogonal.*

Properties of unitary matrices

Theorem

The following are equivalent for an $n \times n$ complex matrix A :

- 1 *A is unitary.*
- 2 *The rows of A form an orthonormal basis for C^n .*
- 3 *The columns of A form an orthonormal basis for C^n .*

Theorem

- *The inverse of an unitary matrix is unitary.*
- *A product of unitary matrices is unitary.*
- *The determinant of an unitary matrix is of norm 1.*

Properties of unitary matrices, cont'd

Theorem

If A is $n \times n$ then the following are equivalent:

- 1 A is unitary.
- 2 $\|Ax\| = \|x\|$ for all $x \in \mathbb{C}^n$.
- 3 $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{C}^n$.

Theorem

If P is a transition matrix from one orthonormal basis to another in a complex space then P is unitary.

Unitary diagonalization

Definition

Suppose A is an $n \times n$ complex matrix. Then if P diagonalizes A and P is unitary then A is said to be unitarily diagonalizable. That is, there is an unitary matrix P such that $P^{-1}AP$ is diagonal.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- 1 A is unitarily diagonalizable and has real eigenvalues.
- 2 A has real eigenvalues and an orthonormal set of n eigenvectors.
- 3 A is Hermitian.

Normal matrices and Schur's Theorem

Definition

A complex $n \times n$ matrix A is called normal if $A^*A = AA^*$.

Theorem

If A is an $n \times n$ complex matrix then the following are equivalent:

- 1 A is unitarily diagonalizable.
- 2 A has an orthonormal set of n eigenvectors.
- 3 A is normal.

Theorem (Schur's theorem)

If A is any $n \times n$ complex matrix then there is an upper triangular matrix S and a unitary matrix P such that $A = P^{-1}SP$.