

Mathematics 2R3 Practice Test 3

Dr. Hart

Last Name: _____

Initials: _____

Student No.: _____

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

Good Luck!

Score

Question	1	2	3	4	5	Total
Points	5	5	5	5	5	25
Score						

continued . . .

1. (5 marks) Answer the following true or false and put your answer in the space provided.

(a) If A is an $n \times n$ real symmetric matrix then any two eigenvectors are orthogonal.

(b) If A and B are similar then they have the same characteristic polynomial.

(c) The eigenvalues of an Hermitian matrix are real.

(d) If T is an invertible linear transformation then its kernel is the zero subspace.

(e) A matrix cannot be similar to itself.

continued . . .

2. (5 points) Suppose that $D : P^2 \rightarrow P^2$ is the differentiation operator $D(p) = p'$.
- (a) Find the matrix associated to D relative to the basis $B = \{1, 1 + x, 1 + x + x^2\}$.
- (b) Use the matrix from part (a) to compute $D(3 + 2x + x^2)$.

3. Suppose that $T : \mathbf{R}^3 \rightarrow \mathbf{R}^3$ is given by

$$T(x, y, z) = (x_1 - x_2, x_2 - x_3, x_3 - x_1).$$

(a) (2 points) Compute the determinant of T .

(b) (3 points) Determine the eigenvalues of T .

4. (5 points) Find a unitary matrix P which unitarily diagonalizes A and determine $P^{-1}AP$ where

$$A = \begin{pmatrix} 3 & i \\ -i & 3 \end{pmatrix}.$$

5. (5 points) Suppose that A is a normal matrix. We know there is a unitary matrix U and a diagonal matrix D such that $A = U^*DU$.
- (a) Suppose that λ is an eigenvalue for A and x is an eigenvector for λ . Show that Ux is an eigenvector for D .
- (b) Assume as a fact that if x and y are eigenvectors for different eigenvalues of a diagonal matrix then $x \cdot y = 0$. Use this fact and part (a) to conclude that for a normal matrix, eigenvectors for distinct eigenvalues are orthogonal.