Mathematics 2R3 Test 1

Dr. Bradd Hart	Oct. 9, 2019		
Last Name: Solutions	Initials:		
Student No.:			

- The test is 50 minutes long.
- The test has 6 pages and 5 questions and is printed on BOTH sides of the paper.
- You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancies to the attention of the invigilator.
- Attempt all questions and write your answers in the space provided.
- Marks are indicated next to each question; the total number of marks is 25.
- You may use a McMaster standard Casio fx-991 MS or MS Plus calculator (no communication capability); no other aids are not permitted.
- Use pen to write your test. If you use a pencil, your test will not be accepted for regrading (if needed).

Good Luck!

Score

Question	1	2	3	4	5	Total
Points	5	5	5	5	5	25
Score						

- 1. (5 marks) Put your answer in the space provided for each part.
 - (a) Every complex $n \times n$ matrix has an eigenvalue. True or false.

T

(b) Every linearly independent set of n vectors in \mathbb{R}^n is a basis for \mathbb{R}^n . True or false.

T

(c) There are 4 polynomials in the vector space P_5 of real polynomials of degree less than or equal to 5 that span P_5 . True or false.

F

- (d) If u = (i, -i) and v = (-i, -i) in \mathbb{C}^2 then $u \cdot v =$
- (e) Find the eigenvalues of the following matrix by inspection.

$$\left(\begin{array}{cccc}
3 - i & 0 & 0 \\
-1 & i & 0 \\
2 & 1 & 1
\end{array}\right)$$

3-i, i, 1

3

Page

2. (a) (3 marks) Find all complex numbers z such that $z^4 = 1 - i$.

1-i=JZe-i7

So one 4th root is 2 e.

All 4th roots are obtained by multiplying by the 4th roots of unity eiks to k=0,1,2,3.

So all 4th roots, we JZe -ix+ik= for k=0,1,2,3

(b) (2 marks) Suppose V is a complex inner product space and $u, v \in V$ such that $\langle u, u \rangle = 1$, $\langle u, v \rangle = i$ and $\langle v, v \rangle = 1$. Compute ||u + v||.

a and the first of the same of

||u+v||2 = <u+v, u+v> = <u,u> + <u,v> + <v,u>+ <v,v>

of the same and the same and

so $||u+v|| = \sqrt{2}$

3. (5 marks) Suppose A is the matrix

$$\left(egin{array}{cc} 1 & i \ -i & 1 \end{array}
ight).$$

Find the eigenvalues and eigenvectors for A in \mathbb{C}^2 .

Charpoly is
$$det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -i \\ i & \lambda - 1 \end{vmatrix} = (\lambda - 1)^2 - 1$$

$$= (\lambda - 2)\lambda$$

so the eigenvalues one $\lambda = 0, 2$.

Eigenvectors:

$$\lambda = 0$$
: Solve $\begin{pmatrix} -1 - i \\ i - 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$ so $ix = y$ and all eigenvectors are of the form $t = t = t$.

$$\lambda=2$$
: Solve $\binom{1-i}{i}\binom{x}{y}$ so $x=iy$ and all eigenvectors are of the form $t\binom{i}{i}$ for $t\in C$.

5

Page

$$\langle f, g \rangle = \int_{-1}^{1} fg \, dx$$

(a) (3 marks) use the Gram-Schmidt process applied to the linearly independent set $\{1, x, x^2\}$ to form an orthogonal set; you do not have to normalize the vectors.

$$V_1 = 1$$
, $||V_1||^2 = \int_{-1}^{1} 1 dx = 2$, $\langle 1, x \rangle = \int_{-1}^{1} x dx = 0$ so

$$V_2 = X$$
.
 $\langle X, X^2 \rangle = \int_{-1}^{1} x^3 dx = 0$ so $P = 0j_X X^2 = 0$
 $\langle 1, X^2 \rangle = \int_{-1}^{1} x^2 dx = \frac{x^3}{3} \Big|_{-1}^{1} = \frac{2}{3}$.

So
$$V_3 = X^2 - proj_1 X^2 = X^2 - \frac{\binom{2}{3}}{2} = X^2 - \frac{1}{3}$$
.

The orthogonal back is then $1, X, X^2 - \frac{1}{3}$.

(b) (2 marks) If f and g are two continuous functions on [-1, 1], explain why

$$\left(\int_{-1}^{1} (f+g)^2 dx\right)^{1/2} \le \left(\int_{-1}^{1} f^2 dx\right)^{1/2} + \left(\int_{-1}^{1} g^2 dx\right)^{1/2}.$$

This is the triangle inequality applied to the given inner product; in general

11+911 = 11+11+11911.

- 5. Suppose that W is a subspace of an inner product space V.
 - (a) (2 marks) Define what is meant by the orthogonal complement, W^{\perp} , of W.

The attagoral complement of W, W+, is the set of all veV s.t. (v,w)= 0 for all weW.

(b) (3 mark) Prove that W^{\perp} is a subspace of V.

D W is not empty since O∈W+.

@ It u, ve W and we W then <u+v, w> = (u, w)+(v, w) = 0+0=0

SO U+VEWI.

(3) If $u \in W^{\perp} = d \times i \times a \text{ sealor}$ then to any $w \in W$ $\langle k u, u \rangle = k \langle u, w \rangle = k \cdot 0 = 0$.

Since W' is non-empty and desired under + and scalar multiplication, W' is a subspace of V.