

Assignment 2, Math 3EE3

Due Feb. 5 in class

- (1) Fix a ring R and let S be the set of all functions from R to R .
 - (a) If we put addition on S as follows: for $f, g \in S$

$$(f + g)(r) = f(r) + g(r) \text{ for all } r \in R$$
 and multiplication defined by multiplication of functions, show S is a ring.
 - (b) Show that the set of polynomially defined functions P contained in S is a subring of S .
 - (c) Show that P and $R[x]$ are not necessarily the same; for instance when R is finite.
- (2) Show that over the ring $M_2(C)$, 2×2 matrices over the complex numbers, the equation $x^2 = I$ has infinitely many solutions.
- (3) Let the set of formal power series over a field F be defined as

$$F[[X]] = \left\{ \sum_{i=0}^{\infty} f_i X^i : f_i \in F \right\}$$

For any $f = \sum_{i=0}^{\infty} f_i X^i$, $g = \sum_{i=0}^{\infty} g_i X^i$ define addition and multiplication on $F[[X]]$ by:

$$f + g = \sum_{i=0}^{\infty} (f_i + g_i) X^i,$$

$$fg = \sum_{i=0}^{\infty} \left(\sum_{j=0}^i f_j g_{i-j} \right) X^i.$$

Prove that $F[[X]]$ is an integral domain.

- (4) Fix an abelian group $(G, +)$. A group homomorphism from G to G is called an endomorphism. Let $End(G)$ be the set of all endomorphisms of G .
 - (a) Show that the sum of two endomorphisms is an endomorphism.
 - (b) Show that the composition of two endomorphisms is an endomorphism.
 - (c) Show then that $End(G)$ with addition and composition is a ring with unity.

(5) The goal of this question is to construct the real numbers algebraically. Start with the ring Q^N , sequences of rational numbers, and let C be the subset of Cauchy sequences i.e. those sequences $(a_i : i \in N)$ such that for every k there is a number M such that if $i, j \geq M$ then $|a_i - a_j| \leq 1/k$. Show that C forms a subring of Q^N .

Define a function $\varphi : C \rightarrow \mathbb{R}$ by $\varphi((a_i : i \in N)) = \lim_{i \rightarrow \infty} a_i$. Show that φ is a surjective homomorphism and identify its kernel I . This shows that $\mathbb{R} \cong C/I$.