

Assignment 3, Math 3EE3
 Due Feb. 26 in class

- (1) Prove the division algorithm for polynomials over an arbitrary field. That is, show that if F is a field and $f, g \in F[x]$ then there are unique $q, r \in F[x]$ such that $g = qf + r$ and $\deg(r) < \deg(f)$. Hint: prove this by induction on the degree of g .
- (2) Prove that if S is a finite subgroup of the multiplicative group of a field K then S is cyclic. Hint: S is a finite abelian group and so by the fundamental theorem of finite abelian groups we can write S as the product of finitely many cyclic subgroups of prime power order i.e.

$$S \cong Z_{d_1} \times \dots \times Z_{d_n}$$

where d_i is a power of a prime for all i . Let m be the least common multiple of the d_i 's. Claim: $a^m = 1$ for all $a \in S$. Ask yourself how many solutions the polynomial $x^m - 1$ can have in K .

- (3) In order to understand the role of the quaternions, we give the following proof; you should provide proofs for the statements in bold.

Theorem (Frobenius). Show that if D is a finite-dimensional real division algebra then D is isomorphic to \mathbb{R}, \mathbb{C} or \mathbb{H} ; that is If D is a division ring and \mathbb{R} is contained in the centre of D i.e. if $\mathbb{R} \subseteq D$ and for every $a \in D$ and $r \in \mathbb{R}$, $ar = ra$, and as an \mathbb{R} -vector space D is finite-dimensional then D is isomorphic to either the reals, the complex numbers or the quaternions.

Proof. Suppose D is as in the theorem and is n -dimensional as a real vector space. Consider the map φ from D to linear transformations on D defined by: for every $a \in D$, $\varphi_a : D \rightarrow D$ such that $\varphi_a(b) = ab$.

Check that for every $a \in D$, φ_a is a linear transformation.

By fixing a basis for D , we can identify the set of linear transformations on D with $M_n(\mathbb{R})$. In this way we can assume that $D \subseteq M_n(\mathbb{R})$ where \mathbb{R} is identified with scalar multiples of I .

Now consider the trace map $tr : D \rightarrow \mathbb{R}$ sending $a \in D$ to $tr(a)$, the trace of the matrix a . The trace is a linear transformation; let V be the kernel of tr . Since \mathbb{R} is one-dimensional as an \mathbb{R} vector space, V is of co-dimension 1 in D and \mathbb{R} together with V generates D .

Now fix $a \in D$ and let $p(x)$ be the characteristic polynomial of a . Over the reals, all polynomials factor into a product of linear and irreducible quadratic terms so

$$p(x) = \prod_{i=1}^k (x - r_i) \prod_{j=1}^l q_j(x)$$

where $r_i \in \mathbb{R}$ and q_j is an irreducible quadratic. By the Cayley-Hamilton Theorem, a satisfies its characteristic polynomial so $p(a) = 0$. Since D is a division ring, this means that either $a = rI$ for some $r \in \mathbb{R}$ or $q(a) = 0$ for some irreducible quadratic q . (**Why?**)

Now if $a \in V$ then $tr(a) = 0$ so either $a = 0$ or the minimal polynomial for a is of the form $q(x) = x^2 + bx + c$ where $b^2 < 4c$ i.e. q is irreducible over \mathbb{R} . The characteristic polynomial for a is then some power of q , say $q^t(x)$. Remembering that the trace of a is the coefficient of x^{2t-1} in the characteristic polynomial **conclude that if $tr(a) = 0$ then $b = 0$** . Therefore, if $a \in V$ and $a \neq 0$ then a satisfies $x^2 + c$ for some $c > 0$. So if $a \in V$ then $a^2 \in \mathbb{R}$ i.e. a^2 is a multiple of I and that multiple is ≤ 0 . We say $a^2 \leq 0$.

Now define an inner product on V by

$$\langle x, y \rangle = \frac{x^2 + y^2 - (x + y)^2}{2}$$

Check that this is an inner product. Make sure you show that $\langle x, y \rangle$ is a real number.

Now suppose that e_1, \dots, e_m is an orthonormal basis for V with respect to this inner product.

Show that

- (1) $e_i^2 = -1$ for all i ,
- (2) $e_i e_j = -e_j e_i$ for $i \neq j$, and
- (3) if $m \geq 3$ then $(e_1 e_2 - e_3)(e_1 e_2 + e_3) = 0$. Why does this show $e_3 = \pm e_1 e_2$?

In fact, the calculation above show that $e_k = \pm e_1 e_2$ for any $k > 2$ i.e. $e_3 = \pm e_k$ for all $k \geq 3$. So m is at most 3. If $m = 0$ then $D = \mathbb{R}$. If $m = 1$ then $e_1^2 = -1$ and we see that $D \cong \mathbb{C}$. If $m > 1$ then in fact $m = 3$ since always e_1, e_2 and $e_1 e_2$ are linearly independent. We have $e_1^2 = e_2^2 = -1$ and $e_1 e_2 = -e_2 e_1$ which are the defining equations for the quaternions so $D \cong \mathbb{H}$. \square