Assignment 3, Math 3EE3
Due Feb. 26 in class

(1) Prove the division algorithm for polynomials over an arbitrary field. That is, show
that if ' is a field and f,g € F[z]| then there are unique ¢, € F[z] such that
g =qf +r and deg(r) < deg(f). Hint: prove this by induction on the degree of g.
(2) Prove that if S is a finite subgroup of the multiplicative group of a field K then S is
cyclic. Hint: S is a finite abelian group and so by the fundamental theorem of finite
abelian groups we can write S as the product of finitely many cyclic subgroups of
prime power order i.e.
SgZdl X .. XZdn

where d; is a power of a prime for all . Let m be the least common multiple of the
d;’s. Claim: a™ =1 for all a € S. Ask yourself how many solutions the polynomial
2™ — 1 can have in K.

(3) In order to understand the role of the quarternions, we give the following proof; you
should provide proofs for the statements in bold.

Theorem (Frobenius). Show that if D is a finite-dimensional real division algebra then D
is isomorphic to R, C or H; that is If D is a division ring and R is contained in the centre
of Die. if RC D and for every a € D and r € R, ar = ra, and as an R-vector space D
is finite-dimensional then D is isomorphic to either the reals, the complex numbers or the
quaternions.

Proof. Suppose D is as in the theorem and is n-dimensional as a real vector space. Consider
the map ¢ from D to linear transformations on D defined by: for every a € D, ¢, : D — D
such that ¢, (b) = ab.

Check that for every a € D, ¢, is a linear transformation.

By fixing a basis for D, we can identify the set of linear transformations on D with M, (R).
In this way we can assume that D C M, (R) where R is identified with scalar multiples of 1.

Now consider the trace map tr : D — R sending a € D to tr(a), the trace of the matrix
a. The trace is a linear transformation; let V' be the kernel of ¢r. Since R is one-dimensional
as an R vector space, V is of co-dimension 1 in D and R together with V' generates D.

Now fix @ € D and let p(z) be the characteristic polynomial of a. Over the reals, all
polynomials factor into a product of linear and irreducible quadratic terms so

k !
p(@) = [[@—r) [T a(@)
i=1 j=1
where r; € R and g; is an irreducible quadratic. By the Cayley-Hamilton Theorem, a satisfies
its characteristic polynomial so p(a) = 0. Since D is a division ring, this means that either
a =rl for some r € R or ¢(a) = 0 for some irreducible quadratic . (Why?)

Now if a € V then tr(a) = 0 so either a = 0 or the minimal polynomial for a is of the form
q(x) = 2° + bx + ¢ where b? < 4c i.e. q is irreducible over R. The characteristic polynomial
for a is then some power of ¢, say ¢'(z). Remembering that the trace of a is the coefficient of
2?1 in the characteristic polynomial conclude that if ¢r(a) = 0 then b = 0. Therefore,
if a € V and a # 0 then a satisfies 22 + ¢ for some ¢ > 0. So if a € V then a? € R i.e. a? is

a multiple of I and that multiple is < 0. We say a? < 0.
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Now define an inner product on V' by
22+ y* — (v +y)?

<l’, y) - 9
Check that this is an inner product. Make sure you show that (x,y) is a real number.
Now suppose that eq,...,e,, is an orthonormal basis for V' with respect to this inner
product.
Show that

(1) e? = —1 for all i,

(2) €i€; = —€;€; for ¢ 7& j, and

(3) if m > 3 then (ejey — e3)(e1e2 + e3) = 0. Why does this show e; = t+ejes?

In fact, the calculation above show that e, = +ejes for any k > 2 i.e. e3 = *e; for all
k > 3. Som is at most 3. If m = 0 then D = R. If m = 1 then €2 = —1 and we see that
D = C. If m > 1 then in fact m = 3 since always e, e; and eje, are linearly independent.
We have e% = e% = —1 and eje5 = —eqeq which are the defining equations for the quaternions
so D= H. ]



