

Assignment 4, Math 3EE3

Due Mar. 12 in class

- (1) Suppose that p is prime and $\sigma : \mathbb{Z}[x] \rightarrow \mathbb{Z}_p[x]$ is defined by computing the coefficients from a polynomial in $\mathbb{Z}[x]$ mod p .
 - (a) Prove that σ is a homomorphism.
 - (b) Show that if $f \in \mathbb{Z}[x]$ and $\sigma(f)$ have the same degree then if $\sigma(f)$ is irreducible over \mathbb{Z}_p then f is irreducible over \mathbb{Z} .
 - (c) Use this to show that $x^3 + 17x + 36$ is irreducible over \mathbb{Z} .
- (2) In class we showed that any field F can be extended to one in which all polynomials over F have a solution. Here is another proof of that fact: Let P be the set of non-constant polynomials over a field F and let X be the set of finite subsets of P . For each $\Delta \in X$ we can find an extension of F , F_Δ such that every polynomial in Δ has a solution in F_Δ . Let $R = \prod_{\Delta \in X} F_\Delta$ and let I be

$$\{\bar{a} \in R : \text{ for some } \Delta \in X, \text{ if } \Delta \subseteq \Sigma \in X \text{ then } a_\Sigma = 0\}$$

Here we are considering $\bar{a} \in R$ as the sequence $\langle a_\Sigma : \Sigma \in X \rangle$.

- (a) Show that I is a proper ideal. Choose a maximal ideal J with $I \subseteq J$ and let $K = R/J$; K is a field.
- (b) Let $\Phi : F \rightarrow K$ be defined by $\Phi(a) = \langle a : \Delta \in X \rangle / J$ i.e. the constant sequence a modulo J . Show that Φ is an embedding. Hence we can associate F with the image of Φ .
- (c) Show that K satisfies all polynomials over F .
- (3) Suppose that F is a field, $S \subseteq F^n$ and I is an ideal in $F[x_1, \dots, x_n] = F[\bar{x}]$. Define

$$I(S) = \{f \in F[\bar{x}] : f(\bar{s}) = 0 \text{ for all } \bar{s} \in S\}$$

and

$$V(I) = \{\bar{s} \in F^n : f(\bar{s}) = 0 \text{ for all } f \in I\}$$

- (a) Prove that $I(S)$ is an ideal.
- (b) Prove that $S \subseteq V(I(S))$.
- (c) Give an example of a subset S of R^2 for which $S \neq V(I(S))$.