

Assignment 1, Math 3TP3

Due Jan. 26, deposited in the Avenue dropbox. No photos of the assignment please - proper pdf scans only.

1. In class, we showed how Euclid constructed an equilateral triangle. Use this construction to construct a regular hexagon. Generalize this to construct a regular $3 \cdot 2^n$ -gon.
2. Recall that in class we constructed sets A_n for every n such that if one derived them n times they remained non-empty but if you derived them $n + 1$ times. This led to the construction of a set A_ω with the property that $A_\omega^{(n)}$ was non-empty for every n but $\bigcap_n A_\omega^{(n)} = \emptyset$. We will now construct a set A such that you have to derive A $\omega + 1$ -many times before the set disappears. That is,

$$B = \bigcap_n A^{(n)} \neq \emptyset \text{ but } B' = \emptyset.$$

Hint: Take the example A_ω we constructed in class as mentioned above. Now recall that \tan^{-1} maps \mathbf{R} to the bounded interval $(-\pi/2, \pi/2)$. This allows you to squish even something constructed on all of \mathbf{R} to an interval. Try to piece together squished copies of A_ω to get the required set A .

3. Let's create a dictionary between logical notions and characteristic functions: Suppose that A and B are subsets of \mathbf{N} . Express, in terms of the characteristic functions χ_A and χ_B , the following:
 - (a) the characteristic function of $\mathbf{N} \setminus A$ i.e. the set of elements of \mathbf{N} not in A .
 - (b) the characteristic function of $A \cup B$.
 - (c) the characteristic function of $A \cap B$.
 - (d) Suppose that $A \subset \mathbf{N}^2$. How do you express the characteristic function of "there exists y such that $(x, y) \in A$ "?
4. Show that for any set A , there is no surjective map from A to $\mathcal{P}(\mathcal{A})$. This shows that the cardinality of A is less than that of $\mathcal{P}(\mathcal{A})$ for every set A .