Assignment 1, Math 4LT3

Due Friday, Jan. 31, by email (please send actual scans or pdfs; no photos)

- 1. As we discussed in class, the standard manner of capturing graphs in model theory as certain types of binary relations doesn't work if you have multiple edges. I sketched a suggestion of how this could be done. Write this up and include sentences that such a structure must satisfy in order the it captures the class of graphs with multiple edges (and possibly loops).
- 2. We will show that every field has an algebraically closed extension (which is actually algebraic over the original field).
 - (a) Start with any field F and then form the ring $R = F[X_f : f \in Irr(F)]$ where Irr(F) is the set of irreducible polynomials over F. Let I be the ideal generated by $\{f(X_f) : f \in Irr(F)\}$. Show that I is a proper ideal of R.
 - (b) Choose $M \supset I$ a maximal ideal in R and show that R/M can be thought of as an algebraic field extension of F in which every irreducible polynomial over F has a solution.
 - (c) Now form a chain $F = F_0 \subset F_1 \subset F_2 \ldots F_n \subset \ldots$ such that F_{n+1} is an algebraic extension of F_n which contains a solution for every irreducible polynomial over F_n . Conclude that $\bigcup F_n$ is an algebraically closed field which is algebraic over F.
 - (d) It turns out that if $F \subset K$ are fields such that K is algebraically closed and algebraic over K then K is unique up to isomorphism over F and is called the algebraic closure of F.
- 3. We wrote out sentences in the language of fields which were satisfied by an algebraically closed field of characteristic p where p is some prime or 0. We want to show that this set of sentences is complete.
 - (a) We need to define what is called a transcendental set of elements inside a field: $X \subset F$ is called transcendental if for all $x \in X$, xis not algebraic over $X \setminus \{x\}$. Show that if $X \subset F$ is a maximal transcendental set the F is algebraic over X.
 - (b) Suppose that $X \subset F$ and $Y \subset G$ are maximal transcendental sets and F and G are algebraically closed of characteristic p. Show

that if $f: X \to Y$ is a bijection then f can be extended to an isomorphism from F to G.

- (c) Now show that if F and G are algebraically closed fields of characteristic p then there are F' and G' of the same uncountable cardinality such that $F \prec F'$ and $G \prec G'$. Conclude that $F' \cong G'$ and so F and G have the same theory.
- 4. Prove the Łoś theorem
- 5. Ultraproducts are used in other areas of mathematics; here is a fairly typical example.
 - (a) Suppose that $r_i \in R$ for all $i \in I$ is a bounded family of real numbers. Fix an ultrafilter U on I. Prove that there is a unique number r such that for every $\epsilon > 0$, $\{i \in I : |r r_i| < \epsilon\} \in U$. We call r the ultralimit of the sequence r_i along the ultrafilter U and write $r = \lim_{i \to U} r_i$.
 - (b) Suppose that (X_i, d_i) is a metric space for each $i \in I$ and fix a point $a_i \in X_i$. Consider the set X be the set of all *I*-indexed sequences $\{\langle x_i : i \in I \rangle$ such that $x_i \in X_i$ for all $i \in I$ and there is some M such that $d_i(x_i, a_i) \leq M$ for all $i \in I$. Fix an ultrafilter U on I and define d on X by

$$d(\bar{x}, \bar{y}) = \lim_{i \to U} d_i(x_i, y_i)$$

Show that d is a pseudo-metric on X; the quotient of X by this pseudo-metric is the metric ultraproduct of the X_i 's.