
Assignment 1, Math 4LT3
Due Friday, Jan. 31, by email (please send actual scans or pdfs; no photos)

1. As we discussed in class, the standard manner of capturing graphs in
model theory as certain types of binary relations doesn’t work if you
have multiple edges. I sketched a suggestion of how this could be done.
Write this up and include sentences that such a structure must satisfy
in order the it captures the class of graphs with multiple edges (and
possibly loops).

Solution: For a graph in this generalized sense we could have two
disjoint sets V and E which constitute the entire universe of the model.
We would also have two relations R1 and R2, both binary, such that if
Ri(x, y) holds then E(x) holds as does V (y). Moreover, these relations
are functional from the sets E to V . They are meant to code the initial
and terminal vertices for a given edge.

2. We will show that every field has an algebraically closed extension
(which is actually algebraic over the original field).

(a) Start with any field F and then form the ring R = F [Xf : f ∈
Irr(F )] where Irr(F ) is the set of irreducible polynomials over F .
Let I be the ideal generated by {f(Xf ) : f ∈ Irr(F )}. Show that
I is a proper ideal of R.

Solution: Suppose that I is not a proper ideal. Then we can find
g1, . . . , gn ∈ R and irreducible polynomials f1, . . . , fn such that

g1f1(Xf1) + . . .+ gnfn(Xfn) = 1.

Now choose some field K extending F in which f1, . . . , fn have
solutions - this is a finite construction adjoining a root of each
polynomial one by one. Now evaluate the displayed expression at
the roots in K to get the absurdity 0 = 1. So I is a proper ideal.

(b) Choose M ⊃ I a maximal ideal in R and show that R/M can
be thought of as an algebraic field extension of F in which every
irreducible polynomial over F has a solution.

Solution: As M is a maximal ideal and R is a commutative ring,
R/M is a field and moreover, F naturally embeds into R/M so we
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have a field extension of F . Every irreducible polynomial f over
F is satisfied by the image of Xf in R/M since f(Xf ) ∈ I and
this means that R/M is generated by algebraic elements over F
and so R/M is an algebraic field extension of F .

(c) Now form a chain F = F0 ⊂ F1 ⊂ F2 . . . Fn ⊂ . . . such that
Fn+1 is an algebraic extension of Fn which contains a solution for
every irreducible polynomial over Fn. Conclude that

⋃
Fn is an

algebraically closed field which is algebraic over F .

Solution: Since each Fn+1 is algebraic over Fn, we conclude that
K =

⋃
Fn is algebraic over F . Moreover, since any polynomial

over K contains only finitely many coefficients, such a polynomial
is also a polynomial over Fn for some n and has a solution in Fn+1

so K is an algebraically closed field.

(d) It turns out that if F ⊂ K are fields such that K is algebraically
closed and algebraic over K then K is unique up to isomorphism
over F and is called the algebraic closure of F .

3. We wrote out sentences in the language of fields which were satisfied by
an algebraically closed field of characteristic p where p is some prime
or 0. We want to show that this set of sentences is complete.

(a) We need to define what is called a transcendental set of elements
inside a field: X ⊂ F is called transcendental if for all x ∈ X, x
is not algebraic over X \ {x}. Show that if X ⊂ F is a maximal
transcendental set then F is algebraic over X.

Solution: If F is not algebraic over X then choose some x ∈ F
which is not algebraic over X. But then X∪{x} is transcendental
and contradicts the maximality of X.

(b) Suppose that X ⊂ F and Y ⊂ G are maximal transcendental sets
and F and G are algebraically closed of characteristic p. Show
that if f : X → Y is a bijection then f can be extended to an
isomorphism from F to G.

Solution: As I said in class, we use heavily the fact that alge-
braic closures are unique up to isomorphism. Since X and Y are
bijective and transcendental, it is easy to show that the bijection
f lifts to a bijective homomorphism f̄ between the two subfields
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generated by X and Y . But as F is the algebraic closure of 〈X〉
and G is the algebraic closure of 〈Y 〉, the uniqueness of the alge-
braic closure guarantees that f̄ lifts to an isomorphism from F to
G.

(c) Now show that if F and G are algebraically closed fields of char-
acteristic p then there are F ′ and G′ of the same uncountable
cardinality such that F ≺ F ′ and G ≺ G′. Conclude that F ′ ∼= G′

and so F and G have the same theory.

Solution: Choose some cardinal λ > |F |, |G|. By the upward
Lowenheim-Skolem theorem, there are F ′ andG′ as described both
of size λ. Now if X is a transcendence basis for F ′ and Y is a
transcendence basis for G′ then |X| = |F ′| = |G′| = |Y | and so by
what we just said in the previous part, F ′ ∼= G′. This guarantees
that F ≡ G.

4. Prove the  Loś theorem.

Solution: Suppose that Mi are L-structures for each i ∈ I, U is an
ultrafilter on I and M =

∏
U Mi. We want to show that if ϕ(x1, . . . , xn)

is an L-formula and m1, . . . ,mn ∈ M with mj = (mj
i : i ∈ I)U for

j = 1, . . . , n then

M |= ϕ(m1, . . . ,mn) iff {i ∈ I : Mi |= ϕ(m1
i , . . . ,m

n
i ) ∈ U.

We do this by induction on the formation of the formula ϕ. Atomic
formulas are immediate by the definition of the ultraproduct and the
connectives are straightforward using the properties of ultrafilters (note
that we need the ultrafilter property for negation). This leaves us with
checking a formula of the form ∃yϕ(y, x1, . . . , xn).

So assume that M |= ∃yϕ(y,m1, . . . ,mn) and choose m ∈M such that
M |= ϕ(m,m1, . . . ,mn). By induction we have

{i ∈ I : Mi |= ϕ(mi,m
1
i , . . . ,m

n
i )} ∈ U.

But then {i ∈ I : Mi |= ∃yϕ(y,m1
i , . . . ,m

n
i )} ∈ U. which is what we

want.

In the other direction, if {i ∈ I : Mi |= ∃yϕ(y,m1
i , . . . ,m

n
i )} ∈ U

then for each i ∈ I, choose mi such that Mi |= ϕ(mi,m
1
i , . . . ,m

n
i ) if
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possible and let it be anything you want if this is not possible. By
induction M |= ϕ(m,m1, . . . ,mn) where m = (mi : i ∈ I) and so
M |= ∃yϕ(y,m1, . . . ,mn).

5. Ultraproducts are used in other areas of mathematics; here is a fairly
typical example.

(a) Suppose that ri ∈ R for all i ∈ I is a bounded family of real
numbers. Fix an ultrafilter U on I. Prove that there is a unique
number r such that for every ε > 0, {i ∈ I : |r− ri| < ε} ∈ U . We
call r the ultralimit of the sequence ri along the ultrafilter U and
write r = limi→U ri.

Solution: We first handle the uniqueness. Suppose that r and s
both satisfy the condition of being the ultralimit of the ri’s. Let
ε = |r−s|

2
. We would have X = {i ∈ I : |r − ri| < ε} ∈ U and

Y = {i ∈ I : |s− ri| < ε} ∈ U . But if i ∈ X ∩ Y then

|r − s| = 2ε > |r − ri|+ |ri − s| ≥ |r − s|

which is a contradiction.

By rescaling the sequence, we can assume that all the ri’s are in
the interval [0, 1]. We now define a decresing sequence of intervals
In for n ∈ N with I0 = [0, 1]. The inductive condition is that
{i ∈ I : ri ∈ In} ∈ U . Suppose we have determined In = [a, b]
and consider the two intervals [a, c] and [c, b] where c = a+b

2
. If

{i ∈ I : ri ∈ [a, c]} ∈ U then let In+1 = [a, c]. Otherwise let
In+1 = [c, b]. It is easy to show that if X ∪ Y ∈ U then at least
one of X or Y is in U . It follows that if In+1 is not [a, c] then
{i ∈ I : ri ∈ [b, c]} ∈ U . It is also straightforward to show that
the length of In is 1

2n
. So the intersection of the intervals In is r

for some r ∈ [0, 1]. We now show that r is the ultralimit of the
ri’s. Choose ε > 0 and fix n such that 1

2n
< ε. Then since r ∈ In,

if ri ∈ In then |r − ri| ≤ 1
2n
< ε. So {i ∈ I : |r − ri| < ε} ∈ U

which demonstrates that r is the ultralimit.

(b) Suppose that (Xi, di) is a metric space for each i ∈ I and fix a
point ai ∈ Xi. Consider the set X be the set of all I-indexed
sequences {〈xi : i ∈ I〉 such that xi ∈ Xi for all i ∈ I and there is
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some M such that di(xi, ai) ≤ M for all i ∈ I. Fix an ultrafilter
U on I and define d on X by

d(x̄, ȳ) = lim
i→U

di(xi, yi)

Show that d is a pseudo-metric on X; the quotient of X by this
pseudo-metric is the metric ultraproduct of the Xi’s.

Solution Possibly the only thing you really need to check here is
that the ultralimit is well-defined. But for each x̄ ∈ X, there is
some M such that di(ai, xi) ≤ M for all i. So if x̄, ȳ ∈ X then
there are M and N such that d(ai, xi) ≤ M and d(ai, yi) ≤ N .
So by the triangle inequality di(xi, yi) ≤ M + N which means
that the sequence di(xi, yi) is bounded and the ultralimit d(x̄, ȳ)
is well-defined. Now to see that d is a pseudo-metric, it is clear
that d(x̄, x̄) = 0 for all x̄ ∈ X. Symmetry is also similarly easy. If
x̄, ȳ and z̄ are all in X then we know that for each i,

di(xi, yi) + di(yI , zi) ≥ di(xi, zi).

It follows easily that taking ultralimits of both sides gives
d(x̄, ȳ) + d(ȳ, z̄) ≥ d(x̄, z̄).
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