
Comments on Problem Sessions 1, 2 and problems for Problem Session 3

Problem Session 1: The only problem we did in full was the following:
Suppose you choose two natural numbers at random; what is the probability

that their greatest common divisor is 1? Slightly more precisely, consider all
natural numbers less than N and assume a uniform distribution on all pairs (a, b)
with a, b < N . Consider the probability that the gcd(a, b) = 1 and determine
the limit as N tends to infinity.
Solution If the probability of the gcd being 1 is ρ then the probability of the
gcd being N is ρ/N2; to see this, notice that the density of numbers divisible
by N among all numbers is 1/N . So the probability of choosing any pair of
numbers is 1 and this equals the sum of the probabilities that that pair has any
given gcd so

1 =

∞∑
N=1

ρ/N2

One remembers (Putnam moment) that

∞∑
N=1

1/N2 = π2/6

and so ρ = 6/π2.
Problem Session 2: The first problem was from the first problem session:

1. Construct a function f : R→ R such that for every x > 0,
limn→∞ f(nx) = 0 but limx→∞ f(x) does not exist.

2. Show that if you assume above that f is continuous then limx→∞ f(x) = 0.

Proof Consider R as a rational vector space; since R is uncountable (Putnam
moment) we can find infinitely many xi ∈ R for i ∈ N which are linearly
independent and such that xN > N for all N . Define f to be zero everywhere
except at any xN where the function is defined to be 1. It is clear that f does
not have a limit as x tends to infinity. Let’s check that for any x > 0, f(nx)
tends to zero as n tends to infinity. In fact, for any given x, there is at most
one N such that for some m, mx = xN . To see this, suppose not and suppose
that mx = xM and nx = xN . Then xM = nxN/N which would imply that xN
and xM are linearly independent. So f(nx) is 1 at most once for any x so the
limit as n tends to infinity to 0.

Now suppose that f is continuous and that limx→∞ f(x) does not exist.
This means that there is an ε > 0 and intervals (ai, bi) such that ai > i and
on the interval (ai, bi), |f(x)| is greater than ε. Define a sequence of decreasing
intervals Ii as follows: Let I0 = (a0, b0). If you have defined In = (cn, dn),
proceed as follows to define In+1: If J = (a, b) then let NJ = (Na,Nb). We
claim that there is an M such that⋃

N≥M

NIn = (Mcn,∞)
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To see this, we just want to choose M large enough so that Mcn < (M +1)cn <
Mdn and this happens whenever M > cn/(dn − cn). Pick i large enough and
N ≥M so that J = (ai, bi)∩NIn is non-empty; say it equals (c, d). Let In+1 =
(c/N, d/N). By choosing x ∈ In for all n ∈ N (completeness of the reals), we
see that for infinitely many N , |f(Nx)| is greater than ε which contradicts the
assumption that f(nx) tends to 0 as n tends to ∞.

The second problem we discussed was A1 from last year’s contest. One can
look at the solution online. The only comments were that the best way to
tackle such a problem is to first try a few cases, form a conjecture, check as best
you can that the conjecture is correct and then try to write out a proof. The
Putnam moment here is the use of the pigeonhole principle, the most vanilla
version of which is: if you have n pigeons and m holes to put them in where
n > m then more than one pigeon winds up in one hole. The way it is applied
is that if you have k > d(n+ 1)/2e then any way you put n pigeons (numbers)
into pigeonholes (boxes) leads to at least two holes with 1 pigeon. If not, then
there would be at least 2(k− 1) + 1 pigeons which is greater than n. There are
a number of places to look for discussions of the PHP; one might start with the
wikipedia page.

The final problem we looked at was A4 from last year: Show that Mn =

1010
10n

+1010
n

+10n−1 is never prime for any n ∈ N . This problem’s Putnam
moment has to do with modular arithmetic; again, the associated wikipedia
page is a good place to start if you have never seen this concept before. We
checked that in the case that n is odd that this number is divisible by 11. It
was left as an exercise to decide what number divides Mn if n = 2km where m
is odd.
Problem session 3 Let’s look at a couple of questions from last year that we
didn’t get to last week: A2 and B1. I also want to talk a little about how we
know limits exist (without actually calculating them!) Here is a good example:

Prove that the following limit exists:

lim
n→∞

1/n+ 1/(n+ 1) + . . .+ 1/2n
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