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1. True/false questions: circle ONE answer. No justification is needed.

(a) [2] arcsin(−1) =
3π

2

TRUE FALSE

(b) [2] The average rate of change of g(x) = lnx from x = 1 to x = 2 is ln 2.

TRUE FALSE

(c) [2] lim
t→∞

4.43
(

π

2
− arctan

2007 − t

42

)
= 4.43π.

TRUE FALSE
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2. Multiple Choice. Clearly circle the one correct answer.

(a) [2] Turbidity T is a measure of cloudiness or haziness in water and is used to assess the
quality of drinking water. It is known that turbidity is proportional to the natural logarithm
of the number of phytoplankton N, proportional to the amount of sediment S, and inversely
proportional to the square of the depth d. Which formula represents the turbidity? (k is a
constant)

(A) T = k
Sd2

N
(B) T = k

S ln N

d2
(C) T = k

ln N

Sd2
(D) T = k

ln N

d2

(E) T = k
Sd

N
(F) T = k

Sd2

ln N
(G) T = k

Sd

ln N
(H) T = k

S ln N

d

(b) [2] Consider the function rectl(x) =

⎧⎨
⎩

1/l if 0 ≤ x ≤ l

0 if otherwise
, where l > 0.

Determine which of the following is/are true.

(I) lim
x→l−

rectl(x) = 1/l (II) lim
x→0+

rectl(x) = 0 (III) lim
x→−l

rectl(x) = 0

(A) none (B) I only (C) II only (D) III only

(E) I and II (F) I and III (G) II and III (H) all three

(c) [2] Which of the following functions approach(es) 0 faster than x−1 as x → ∞?

(I) f(x) = e−0.1x (II) g(x) = 100x−0.1 (III) h(x) = 0.2x−1.1

(A) none (B) I only (C) II only (D) III only

(E) I and II (F) I and III (G) II and III (H) all three
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3. (a) [2] Determine the domain of f(x) =

√
3x

x + 4
.

(b) [2] Find the range of g(x) = −x2 + 8x − 17.

(c) [3] Sketch the graph of f(x) =

⎧⎨
⎩
√

1 − x if x < 1

2x − 3 if x ≥ 1
.

y

x
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4. Consider the Widmark formula for the Blood Alcohol Concentration estimation given by

C =
A

rW
− βt

(a) [2] Sketch a graph showing how the blood alcohol concentration C depends on the body
weight W . Assume that all parameters are positive. Label the axes and any intercepts.

(b) [2] If person A’s body weight is 25% greater than person B’s, how does person A’s
blood alcohol concentration compare to that of person B’s at time t = 0 (assuming all other
parameters are equal)?
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5. A population changes according to the formula P (t) = 1200e1.32t, where t is time in
years.

(a) [1] In one sentence, state what question is answered by finding the inverse function.

(b) [2] Find the inverse function of P (t).

(c) [3] Sketch the semilog graph (use ln) of the population P (t) for t ≥ 0. Label the axes.
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6. A population of birds is modelled by the equation B(t) = 2.5 sin π
6 t + 6, where B is the

number of birds in thousands at time t in months (January corresponds to t = 0).

(a) [2] State the maximum, minimum, and average number of birds in this population over
the course of one year.

(b) [3] Sketch the graph of B(t) for 0 ≤ t ≤ 12.
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7. [3] Use the definition of continuity to show that the function

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 + 3x − 10
x − 2

if x �= 2

8 if x = 2

is not continuous at x = 2.

8. [3] Consider the function f(x) =
√

4 − 3x. Using the definition of the derivative, find
f ′(x).

THE END
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