Infinite Limits

Example:

Use a table of values to estimate the value of

$$\lim_{x \to 0} \frac{1}{x}$$

x	f(x)
0.1	
0.01	
0.001	
0	undefined
-0.001	
-0.01	
-0.1	

-

Infinite Limits

Definition:

 $\lim_{x \to a} f(x) = \infty$

"the limit of f(x), as x approaches a, is infinity"

means that the values of f(x)(y-values) increase **without bound** as x becomes closer and closer to a (from either side of a), but $x \neq a$.

Definition:

$$\lim_{x \to a} f(x) = -\infty$$

"the limit of f(x), as x approaches a, is negative infinity"

means that the values of f(x)(y-values) decrease **without bound** as x becomes closer and closer to a (from either side of a), but $x \neq a$.

Infinite Limits

Example:

Determine the infinite limit.

(a) $\lim_{x \to -1} \frac{x+2}{x+1}$

Note:

Since the values of these functions do not approach a real number L, these limits **do not exist**.

(b) $\lim_{x\to\pi^+} \csc x$

Vertical Asymptotes

Definition:

The line x=a is called a **vertical asymptote** of the curve y=f(x) if either

$$\lim_{x \to a^-} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = \pm \infty$$

Example:

Basic functions we know that have VAs:

The behaviour of functions "at" infinity is also known as the **end behaviour** or **long-term behaviour** of the function.

What happens to the y-values of a function f(x) as the x-values increase or decrease without bounds?

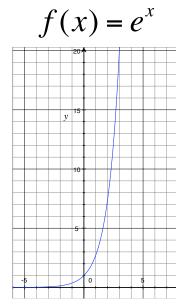
$$\lim_{x \to -\infty} f(x) = ?$$

$$\lim_{x \to \infty} f(x) = ?$$

Possibility:

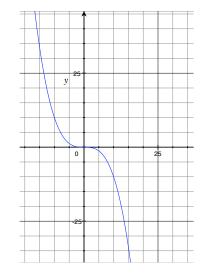
y-values also approach infinity or - infinity

Examples:



$$\lim_{x \to \infty} e^x = \infty \quad (\text{limit D.N.E})$$
section 4.3

$$f(x) = -0.01x^3$$



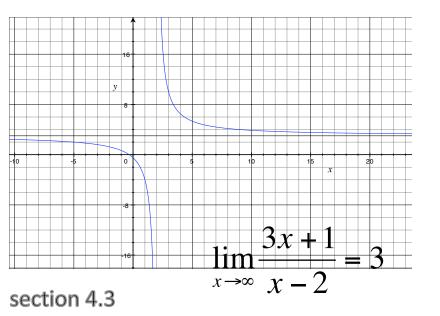
$$\lim_{x \to \infty} -0.01x^3 = -\infty \quad (\text{limit D.N.E})$$

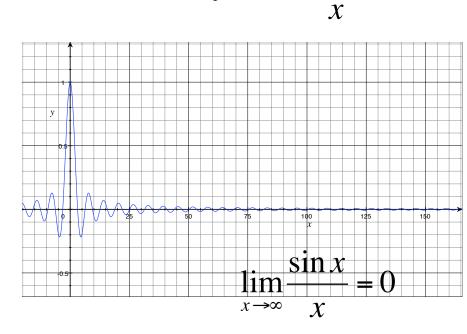
Possibility:

y-values approach a unique real number L

Examples:

$$f(x) = \frac{3x+1}{x-2}$$



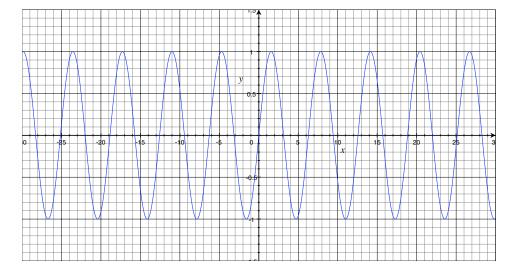


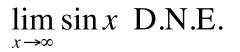
 $f(x) = \frac{\sin x}{\cos x}$

Possibility: y-values oscillate and do not approach a single value

Example:

$$f(x) = \sin x$$





Definition:

 $\lim_{x\to\infty}f(x)=L$

"the limit of f(x), as x approaches ∞ , is L"

means that the values of f(x) (y-values) can be made as close as we'd like to L by taking x sufficiently large. Definition:

 $\lim_{x \to -\infty} f(x) = L$

"the limit of f(x), as x approaches $-\infty$, is L"

means that the values of f(x) (y-values) can be made as close as we'd like to L by taking x sufficiently small (i.e., large negative).

Calculating Limits at Infinity

*The Limit Laws listed previously are still valid if " $x \rightarrow a$ " is replaced by " $x \rightarrow \infty$ "

Limit Laws for Infinite Limits (abbreviated):

$$\infty + \infty = \infty$$
$$\infty \cdot \infty = \infty$$
$$c \cdot \infty = \infty$$
where c>0 is any non-zero constant

Calculating Limits at Infinity

Theorem:

If r>0 is a rational number, then $\lim_{x\to\infty}\frac{1}{x^r}=0$.

If r>0 is a rational number such that x^r is defined for all x, then $\lim_{x \to -\infty} \frac{1}{x^r} = 0$.

Calculating Limits at Infinity

Examples:

Find the limit or show that it does not exist.

(a)
$$\lim_{x \to \infty} \frac{2x+1}{4-\sqrt{x}}$$

(b) $\lim_{t \to \infty} 4.42857 \left(\frac{\pi}{2} - \arctan\frac{2007-t}{42}\right)$

Horizontal Asymptotes

<u>Definition</u>: The line y=L is called a **horizontal asymptote** of the curve y=f(x) if either

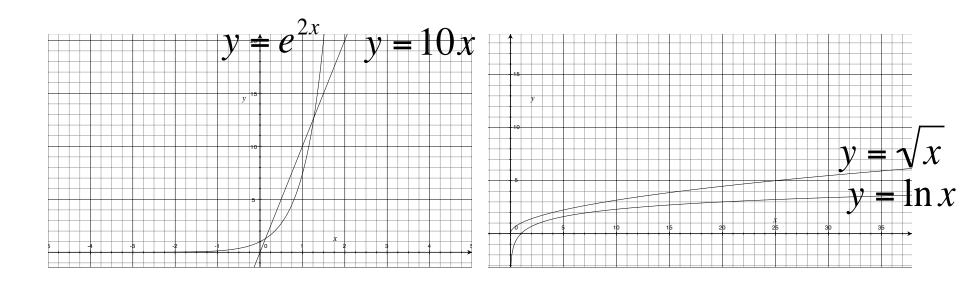
$$\lim_{x \to \infty} f(x) = L \quad \text{or} \quad \lim_{x \to -\infty} f(x) = L$$

Example: Basic functions we know that have HAs:

What about the limits at infinity of these functions?

(a)
$$f(x) = \frac{e^{2x}}{10x}$$
 (b) $g(x) = \frac{\ln x}{\sqrt{x}}$

Which part (top or bottom) goes to infinity faster?



Suppose $\lim_{x\to\infty} f(x) = \infty$ and $\lim_{x\to\infty} g(x) = \infty$

1. f(x) approaches infinity **faster** than g(x) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$.

2. f(x) approaches infinity **slower** than g(x) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

3. f(x) and g(x) approach infinity at the same rate if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

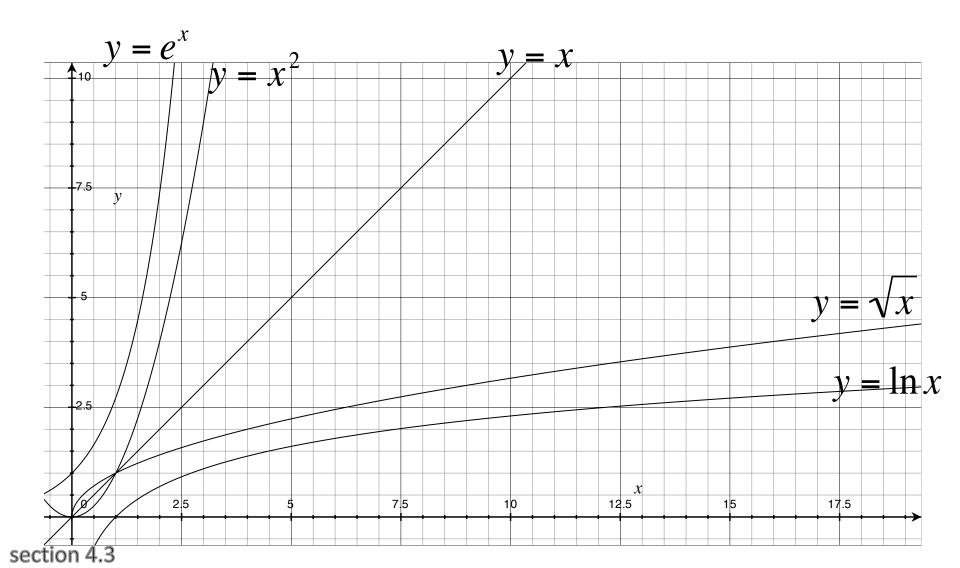
where L is any finite number other than 0.

Comparing Functions That Approach $\,\infty\,$ at $\,\infty\,$

The Basic Functions in Increasing Order of Speed

Function	Comments
$a \ln x$	Goes to infinity slowly
ax^n with $n > 0$	Approaches infinity faster for larger n
$ae^{\beta x}$ with $\beta > 0$	Approaches infinity faster for larger eta

Note: The constant a can be any positive number and does not change the order of the functions.

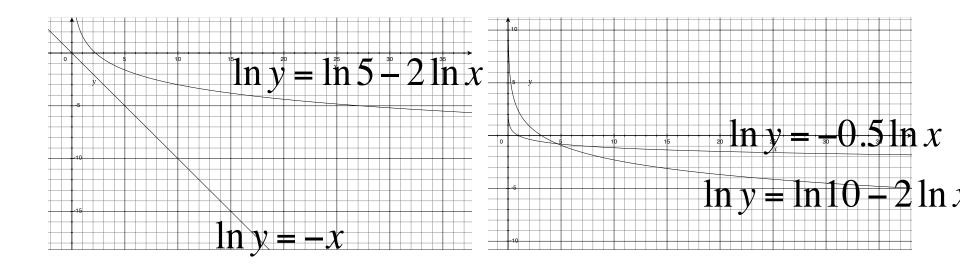


What about the limits at infinity of these functions?

(a)
$$f(x) = \frac{e^{-x}}{5x^{-2}}$$
 (b) $g(x) = \frac{x^{-0.5}}{10x^{-2}}$

Which part (top or bottom) goes to 0 faster?

Semilog Graphs



Suppose $\lim_{x\to\infty} f(x) = 0$ and $\lim_{x\to\infty} g(x) = 0$.

1. f(x) approaches 0 faster than g(x) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 0$.

- 2. f(x) approaches 0 slower than g(x) if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$.
- 3. f(x) and g(x) approach 0 at the same rate if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = L$.

where L is any finite number other than 0.

The Basic Functions in Increasing Order of Speed

Function	Comments
ax^{-n} with $n > 0$	Approaches 0 faster for larger <i>n</i>
$ae^{-\beta x}$ with $\beta > 0$	Approaches 0 faster for larger eta
$ae^{-\beta x^2 \text{ with }} \beta > 0$	Approaches 0 really fast

Note: Again, a can be any positive constant and this will not affect the ordering.

