Infinite Limits
Example: __

0.1
Use a table of values to
timate the value of .
estimate the value o 0.001
Ii 1 0 undefined
11m-—
x—=0 y -0.001
-0.01
-0.1
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Infinite Limits

Definition:

lim f(x) =

X—>d

“the limit of f(x), as x
approaches a, is infinity”

means that the values of f(x)
(y-values) increase without
bound as x becomes closer
and closer to a (from either
side of a), but x = a.
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Definition:

lim f(x) = -

X—a

“the limit of f(x), as x
approaches a, is nhegative
infinity”

means that the values of f(x)
(y-values) decrease without
bound as x becomes closer
and closer to a (from either
side of a), but x = a.



Infinite Limits

Example:
Determine the infinite limit.

(a) im X+2

x—-1 x + 1 Note:
Since the values of these functions
do not approach a real number L,

these limits do not exist.

(b) lim cscx

x—=a”
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Vertical Asymptotes

Definition:
The line x=a is called a vertical asymptote of the
curve y=f(x) if either

lim f(x)=#00 or lim f(x)==0

x—a x—a

Example:
Basic functions we know that have VAs:
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Limits at Infinity

The behaviour of functions “at” infinity is also
known as the end behaviour or long-term
behaviour of the function.

What happens to the y-values of a function f(x)

as the x-values increase or decrease without
bounds?

lin}Of(x)=? Iim f(x)="

X —— X —>0
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Limits at Infinity

Possibility:
y-values also approach infinity or - infinity
Examples:

flx)=e f(x)=-001x"

| L
| \
] 1

lime* = oo (limit D.N.E) lim—0.01x* = —o (limit D.N.E)

X —>00

X —>00
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Limits at Infinity

Possibility:
y-values approach a unique real number L

Examples:
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Possibility:

Limits at Infinity

y-values oscillate and do not approach a single value

Example:

f(x)=sinx
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Limits at Infinity

Definition: Definition:

lim f(x)=L lim f(x)=L
“the limit of f(x), as x “the limit of f(x), as x
approaches oo, is L” approaches—, is L”

means that the values of f(x) means that the values of f(x)

(y-values) can be made as (y-values) can be made as
close as we’d like to L by close as we’d like to L by
taking x sufficiently large. taking x sufficiently small

(i.e., large negative).
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Calculating Limits at Infinity

*The Limit Laws listed previously are still valid if
“x = a” isreplaced by “ x — "

Limit Laws for Infinite Limits (abbreviated):

0 4+ OO = OO
000 = 00
C*00 =00
/

where ¢>0 is any non-zero constant
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Calculating Limits at Infinity

Theorem:

.1
If r>0 is a rational number, then lim—=0.

X —>00 x

If r>0 is a rational number such that x’ is

defined for all x, then lim 1 =0.

X —>—00 xr
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Calculating Limits at Infinity

Examples:
Find the limit or show that it does not exist.

2x+1

Iim
(a) 22,7,

[—>0

(b)lim 4.42857(% —arctan 2007- t)

42
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Horizontal Asymptotes

Definition:
The line y=L is called a horizontal asymptote of the
curve y=f(x) if either

lim f(x)=L or lim f(x)=L

X —>00

Example:
Basic functions we know that have HAs:
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Limits at Infinity

What about the limits at infinity of these
functions?

er

10x

Inx

(b) g(x)= ﬁ

(a) f(x)=

Which part (top or bottom) goes to infinity faster?
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Limits at Infinity
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Comparing Functions That Approach o0 at o0

Suppose lim f(x) = and limg(x)= o

X —>00 X —>x0

1. f(x) approaches infinity faster than g(x) if lim f((x)) = 00,
e o J)
2. f(x) approaches infinity slower than g(x) if lim =0.

= g(x)

3. f(x) and g(x) approach infinity at the same rate if 1jmf(x) =L
= g(x)
where L is any finite number other than 0.
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Comparing Functions That Approach oo at co

The Basic Functions in Increasing Order of Speed

aln x Goes to infinity slowly
ax” with n> () Approaches infinity faster for larger n
aeﬁx with ﬁ S O Approaches infinity faster for larger /3

Note: The constant @ can be any positive number and does not
change the order of the functions.
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Comparing Functions That Approach c0 at o0
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Limits at Infinity

What about the limits at infinity of these
functions?

y 0.5

X
(b) g(x)= 02

€

5x~°

(a) f(x)=

Which part (top or bottom) goes to O faster?
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Limits at Infinity

Semilog Graphs
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Comparing Functions That Approach () at 00

Suppose lim f(x)=0 and limg(x)=0.

X —>0 X —>0

1. f(x) approaches O faster than g(x) if limf(x) =0.
= g(x)
2. f(x) approaches O slower than g(x) if limf(x) = 00,
= 8(x)
f(x)

3. f(x) and g(x) approach O at the same rate if lim L.

= g(x)
where L is any finite number other than 0.
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Comparing Functions That Approach () at o0

The Basic Functions in Increasing Order of Speed

ax‘” with 71 > O Approaches O faster for larger n
ae—[o’x with ﬁ > () Approaches 0 faster for larger f3
ae—[)’x2 with [3’ > O Approaches O really fast

Note: Again, a can be any positive constant and this will not affect
the ordering.
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Comparing Functions That Approach () at o0
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Comparing Functions That Approach () at o0
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