Basic Differentiation Rules

All rules are proved using the definition of the derivative:

$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

 The derivative exists (i.e. a function is differentiable) at all values of x for which this limit exists.

The Constant Function Rule

If f(x) = k, where k is a constant, then f'(x) = 0.

The Power Rule

If $f(x) = x^n$, where $n \in R$, then $f'(x) = nx^{n-1}$.

Example:

Differentiate the following.

(a)
$$f(x) = x$$
 (b) $g(x) = x^{100}$

(c)
$$h(x) = \frac{1}{x^6}$$
 (d) $s(t) = \sqrt{t}$

The Constant Multiple Rule

Let *k* be a constant.

Then
$$\frac{d}{dx}[k \cdot f(x)] = k \cdot \frac{d}{dx}[f(x)].$$

Example:

Find each derivative. (a) $\frac{d}{dK} \left[\frac{Kl(\gamma+1)^2}{D^4} \right]$ (b) $\frac{d}{dD} \left[\frac{Kl(\gamma+1)^2}{D^4} \right]$

The Sum/Difference Rule $[f(x) \pm g(x)]' = f'(x) \pm g'(x)$

provided f and g are differentiable functions.

Examples: Differentiate. (a) $f(x) = 3x^4 + 5x^2 - 10$ (b) $g(x) = \sqrt{5x} + \frac{x}{-10} - \pi^2$

(b)
$$g(x) = \sqrt{5x} + \frac{x}{\sqrt{5}} - \pi^2$$

Using the Derivative to Sketch the Graph of a Function

Example:

Sketch the graph of $F(x) = x + \frac{1}{x}$.

Derivative of the Natural Exponential Function

Definition:

The number *e* is the number for which

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

Natural Exponential Function:

$$f(x) = e^x$$

Derivative of the Natural Exponential Function

<u>Note</u>:

This definition states that the slope of the tangent to the curve at (0,1) is exactly 1, i.e.

Derivative of the Natural Exponential Function

If
$$f(x) = e^x$$
, then $f'(x) = e^x$.

In words:

The slope of the tangent line to the curve $f(x) = e^x$ at the point P is equal to the value of the function at P.

