Chain Rule

 $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

"derivative of the outer function evaluated at the inner function times the derivative of the inner function"

Example: Differentiate the following.

(a)
$$f(x) = (4x^3 + 1)^{10}$$
 (b) $g(x) = \frac{1}{\sqrt{x^2 + e^{3x}}}$

section 5.3

Derivatives of General Exponential Functions

If $f(x) = a^x$, then $f'(x) = a^x \cdot \ln a$.

Example:

Differentiate.

(a)
$$f(x) = e^x$$
 (b) $g(x) = 7^x + x^7$ (c) $h(x) = 2^{5x^2 + 1}$

Derivatives of General Exponential Functions

Example:

Show that $y = 3e^{4x}$ satisfies the differential equation y' = 4y.

Derivatives of Logarithmic Functions

1

If
$$f(x) = \log_a x$$
, then $f'(x) = \frac{1}{x \cdot \ln a}$.

Example 1: Differentiate. (a) $f(x) = \ln x$ (b) $g(x) = \log_4(x^2 + 5x + 6)$

Example 2:

Determine the equation of the tangent line to the curve $f(x) = \frac{\ln x}{x}$ at the point P(1,0).