Another application of derivatives is to help evaluate limits of the form

 $\lim_{x \to a} \frac{f(x)}{g(x)}$

where either $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$

or $\lim_{x \to a} f(x) = \pm \infty$ and $\lim_{x \to a} g(x) = \pm \infty$.

<u>Idea</u>:

Instead of comparing the functions f(x) and g(x), compare their derivatives (rates) f'(x) and g'(x).

section 6.4

Suppose that f and g are differentiable functions such that $\lim_{x \to a} \frac{f(x)}{g(x)}$

is an **indeterminate form** of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. If $g'(x) \neq 0$ near a (could be 0 at a) then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Evaluate the following limits using L'Hopital's Rule, if it applies.

(a)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}$$
 (b) $\lim_{x \to 0} \frac{\sin x}{x}$

(c)
$$\lim_{x \to 0} \frac{\tan x - x}{x^3}$$

section 6.4

Evaluate the following limits using L'Hopital's Rule, if it applies.

(a)
$$\lim_{x \to \infty} x^2 e^{-3x}$$
 (b) $\lim_{x \to \infty} x^{\frac{1}{x}}$