Solving Pure-Time DEs

The general form of a pure-time differential equation is

$$\frac{dF}{dx} = f(x)$$

where F(x) is the unknown state variable and f(x) is the measured rate of change.

Examples:

(a)
$$\frac{dF}{dx} = 4x^3 + 1$$
 (b) $\frac{dy}{dx} = 5e^x + \frac{1}{1+x^2}$

Solving Pure-Time DEs

"Guess and check" to solve each equation.

Ask yourself: *"What function has this as its derivative?"*

Examples:

(a)
$$\frac{dF}{dx} = 4x^3 + 1$$
 (b) $\frac{dy}{dx} = 5e^x + \frac{1}{1+x^2}$

Antiderivatives/Indefinite Integrals

An antiderivative (or indefinite integral) of a function f(x) is a function F(x) with derivative equal to f(x).

$$F'(x) = f(x) \quad \Leftrightarrow \quad F(x) = \int f(x) dx$$

An antiderivative F(x) is a solution to the puretime differential equation

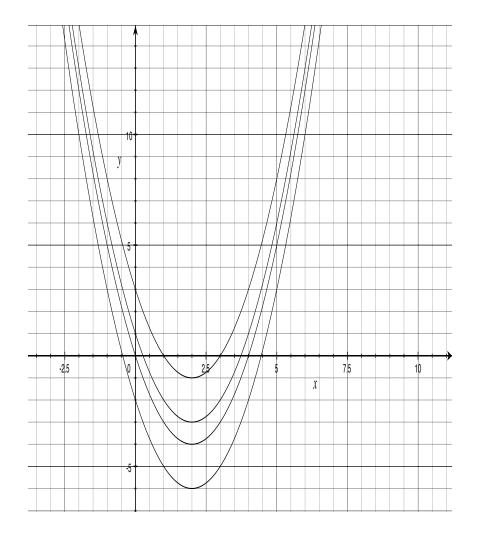
$$\frac{dF}{dx} = f(x).$$

Initial Value Problems

A differential equation has a whole family of solutions.

Example:

$$y' = 2x - 4$$
$$y = x^2 - 4x + 6$$

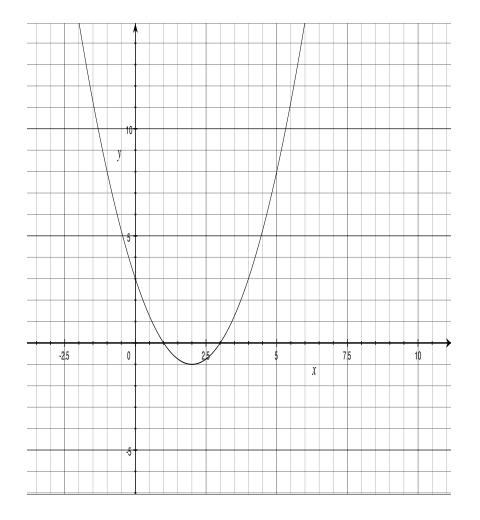


Initial Value Problems

An initial value problem provides an initial condition so you can find a particular solution.

Example:

$$y'=2x-4$$
, $y(0) = 3$
 $y = x^2 - 4x + 3$



Antiderivatives/Indefinite Integrals

Theorem 7.2.1:

If F(x) is an antiderivative of f(x), then the most general antiderivative of f(x) is F(x)+C; i.e.,

$$\int f(x)dx = F(x) + C$$

where C is a real number.

If an initial value of the solution is given, then we can solve for C to find a specific or particular antiderivative of f(x).

Rules for Antiderivatives

The Power Rule for Integrals

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1$$

Example: Integrate each.

(a)
$$\int x^7 dx$$
 (b) $\int \frac{1}{t^4} dt$ (c) $\int \sqrt{x} dx$

Rules for Antiderivatives

The Constant Multiple Rule for Integrals

Suppose $\int f(x)dx = F(x) + C$. Then $\int af(x)dx = aF(x) + C'$. for any constant *a*.

The Sum Rule for Integrals

Suppose
$$\int f(x)dx = F(x) + C$$
 and $\int g(x)dx = G(x) + C'$.

$$\int_{\text{section 7.2}} [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx = F(x) + G(x) + C''.$$

Examples

Example 1:

Integrate.

(a)
$$\int (5x^4 - \frac{3}{x})dx$$
 (b) $\int (\sec^2 x + e^{4x})dx$

Example 2:

Solve the differential equation

$$f'(x) = 2^x + \frac{1}{2\sqrt{x}}$$

with initial condition f(0) = 0.

More Examples

Example 1: Integrate.

(a)
$$\int \frac{Kl(\gamma+1)^2}{D^4} dD$$
 (b) $\int \frac{Kl(\gamma+1)^2}{D^4} d\gamma$

Example 2: True or False? Explain.

(a)
$$\int \arctan x \, dx = \frac{1}{1+x^2}$$
 (b) $\int e^{x^2} \, dx = \frac{e^{x^2}}{2x} + C$

Summary Of Some Basic Integration Formulas

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1$$

$$\int \cos x dx = \sin x + C$$

$$\int x^{-1}dx = \int \frac{1}{x}dx = \ln|x| + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int e^x dx = e^x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \frac{1}{1+x^2} dx = \arctan x + C$$