The Chain Rule and Integration by Substitution

Recall:
The chain rule for derivatives allows us to differentiate a composition of functions:

The Chain Rule and Integration by Substitution

Suppose we have an integral of the form

Then, by reversing the chain rule for derivatives,
we have $\int f(g(x)) g^{\prime}(x) d x=F(g(x))+C$.
integrand is the result of
differentiating a composition
of functions

Example

$$
\text { Integrate } \int \frac{2 x+5}{\sqrt{x^{2}+5 x-7}} d x
$$

Integration by Substitution

Algorithm:

1. Let $u=g(x)$ where $g(x)$ is the part causing problems and $g^{\prime}(x)$ cancels the remaining x terms in the integrand.
2. Substitute $u=g(x)$ and $d u=g^{\prime}(x) d x$ into the integral to obtain an equivalent (easier!) integral all in terms of u.

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Integration by Substitution

Algorithm:

3. Integrate with respect to u, if possible.

$$
\int f(u) d u=F(u)+C
$$

4. Write final answer in terms of x again.

$$
F(u)+C=F(g(x))+C
$$

Integration by Substitution

Example:
Integrate each using substitution.
(a) $\int x e^{4 x^{2}} d x$
(b) $\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$
(c) $\int_{1}^{e^{4}} \frac{\ln x}{x} d x$

The Product Rule and Integration by Parts

The product rule for derivatives leads to a technique of integration that breaks a complicated integral into simpler parts.

Integration by Parts Formula:

$$
\int u d v=u v-\int v d u
$$

given integral that we cannot solve
hopefully this is a simpler Integral to evaluate

The Product Rule and Integration by Parts

Deriving the Formula

Start by writing out the Product Rule:

$$
\frac{d}{d x}[u(x) \cdot v(x)]=\frac{d u}{d x} \cdot v(x)+u(x) \cdot \frac{d v}{d x}
$$

Solve for $u(x) \cdot \frac{d v}{d x}$:

$$
u(x) \cdot \frac{d v}{d x}=\frac{d}{d x}[u(x) \cdot v(x)]-\frac{d u}{d x} \cdot v(x)
$$

The Product Rule and Integration by Parts

Deriving the Formula

Integrate both sides with respect to x :

$$
\int u(x) \frac{d v}{d x} d x=\int \frac{d}{d x}[u(x) \cdot v(x)] d x-\int v(x) \frac{d u}{d x} d x
$$

The Product Rule and Integration by Parts

Deriving the Formula

Simplify:

$$
\begin{aligned}
& \int u(x) \frac{d v}{d x} d x=\int \frac{d}{d x}[u(x) \cdot v(x)] d x-\int v(x) \frac{d u}{d x} d x \\
& \quad \Rightarrow \int u(x) d v=u(x) \cdot v(x)-\int v(x) d u
\end{aligned}
$$

Integration by Parts
 $$
\int u d v=u v-\int v d u
$$

Template:

Choose:

$$
u=\begin{aligned}
& \text { part which gets simpler } \\
& \text { after differentiation }
\end{aligned} \quad d v=\text { easy to integrate part }
$$

Compute:

$$
d u=
$$

$$
v=
$$

Integration by Parts

Example:
Integrate each using integration by parts.
$\begin{array}{ll}\text { (a) } \int x \cos 4 x d x & \text { (b) } \int x^{2} e^{\frac{x}{2}} d x\end{array}$
(c) $\int_{1}^{2} \ln x d x$

Strategy for Integration

Method Applies when...
Basic antiderivative ...the integrand is recognized as the reversal of a differentiation formula, such as

Guess-and-check ...the integrand differs from a basic antiderivative in that " x " is replaced by "ax+b", for example

...the integrand contains a single function whose derivative we know, such as

Strategy for Integration

What if the integrand does not have a formula for its antiderivative?

Example:

impossible to integrate $\int_{0}^{1} e^{-x^{2}} d x$

Approximating Functions with Polynomials

Recall:

The quadratic approximation to $f(x)=e^{-x^{2}}$ around the base point $\mathrm{x}=0$ is $T_{2}(x)=1-x^{2}$.

$$
T_{2}(x) \neq 1-x^{2}
$$

Integration Using Taylor Polynomials

We approximate the function with an appropriate Taylor polynomial and then integrate this Taylor polynomial instead!

Example:

Integration Using Taylor Polynomials

We can obtain a better approximation by using a higher degree Taylor polynomial to represent the integrand.

Example:

$$
\begin{aligned}
& \int_{0}^{1} e^{-x^{2}} d x \\
& \approx \int_{0}^{1}\left(1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{6} x^{6}\right) d x \\
& \approx\left[x-\frac{1}{3} x^{3}+\frac{1}{10} x^{5}-\left.\frac{1}{42} x^{7}\right|_{0} ^{1}\right. \\
& \approx 0.74286
\end{aligned}
$$

