The Chain Rule and Integration by Substitution

<u>Recall</u>:

The chain rule for derivatives allows us to differentiate a composition of functions:

The Chain Rule and Integration by Substitution

Suppose we have an integral of the form

Then, by reversing the chain rule for derivatives, we have $\int f(g(x))g'(x)dx = F(g(x)) + C$.

> integrand is the result of differentiating a composition of functions

Example

Integrate
$$\int \frac{2x+5}{\sqrt{x^2+5x-7}} dx$$

Integration by Substitution

<u>Algorithm</u>:

- 1. Let u = g(x) where g(x) is the part causing problems and g'(x) cancels the remaining x terms in the integrand.
- 2. Substitute u = g(x) and du = g'(x)dx into the integral to obtain an equivalent (easier!) integral all in terms of u.

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Integration by Substitution

<u>Algorithm</u>:

3. Integrate with respect to u, if possible.

$$\int f(u)du = F(u) + C$$

4. Write final answer in terms of x again.

$$F(u) + C = F(g(x)) + C$$

Integration by Substitution

Example:

Integrate each using substitution.

(a)
$$\int xe^{4x^2} dx$$
 (b) $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$

(c)
$$\int_{1}^{e^4} \frac{\ln x}{x} dx$$

The product rule for derivatives leads to a technique of integration that breaks a complicated integral into simpler parts.

Integration by Parts Formula:

$$\int u dv = uv - \int v du$$

given integral that we cannot solve

hopefully this is a simpler Integral to evaluate

Deriving the Formula

Start by writing out the Product Rule:

$$\frac{d}{dx}[u(x)\cdot v(x)] = \frac{du}{dx}\cdot v(x) + u(x)\cdot \frac{dv}{dx}$$

Solve for
$$u(x) \cdot \frac{dv}{dx}$$
:

$$u(x) \cdot \frac{dv}{dx} = \frac{d}{dx} [u(x) \cdot v(x)] - \frac{du}{dx} \cdot v(x)$$

Deriving the Formula

Integrate both sides with respect to x:

$$\int u(x)\frac{dv}{dx}dx = \int \frac{d}{dx} [u(x) \cdot v(x)] dx - \int v(x)\frac{du}{dx}dx$$

Deriving the Formula

Simplify:

$$\int u(x) \frac{dv}{dx} dx = \int \frac{d}{dx} [u(x) \cdot v(x)] dx - \int v(x) \frac{du}{dx} dx$$

$$\Rightarrow \int u(x)dv = u(x) \cdot v(x) - \int v(x)du$$

Integration by Parts $\int u dv = uv - \int v du$

<u>Template</u>:

Choose:

u = part which gets simpler after differentiation

$$dv =$$
 easy to integrate part

v =

Compute:

$$du =$$

Integration by Parts

Example:

Integrate each using integration by parts.

(a)
$$\int x \cos 4x \, dx$$
 (b) $\int x^2 e^{\frac{x}{2}} \, dx$

(c)
$$\int_{1}^{2} \ln x \, dx$$

Strategy for Integration

Method	Applies when
Basic antiderivative	the integrand is recognized as the reversal of a differentiation formula, such as
Guess-and-check	the integrand differs from a basic antiderivative in that "x" is replaced by "ax+b", for example
Substitution	both a function and its derivative (up to a constant) appear in the integrand, such as
Integration by parts	the integrand is the product of a power of x and one of sin x, cos x, and e ^x , such as
	the integrand contains a single function whose derivative we know, such as

Strategy for Integration

What if the integrand does not have a formula for its antiderivative?

Example:

impossible to integrate

$$\int_{0}^{1} e^{-x^2} dx$$

Approximating Functions with Polynomials

<u>Recall</u>:

The quadratic approximation to $f(x) = e^{-x^2}$ around the base point x=0 is $T_2(x) = 1 - x^2$.

Integration Using Taylor Polynomials

We approximate the function with an appropriate Taylor polynomial and then integrate this Taylor polynomial instead!

Example:

Integration Using Taylor Polynomials

We can obtain a better approximation by using a higher degree Taylor polynomial to represent the integrand.

