The Definite Integral – Area Between Curves

The area between the curves y = f(x) and y = g(x) and between x = a and x = b is

$$A = \int_{a}^{b} \left| f(x) - g(x) \right| dx$$

$$|f(x) - g(x)| = \begin{cases} f(x) - g(x) & when \quad f(x) \ge g(x) \\ g(x) - f(x) & when \quad f(x) \le g(x) \end{cases}$$

The Definite Integral – Area Between Curves

Examples:

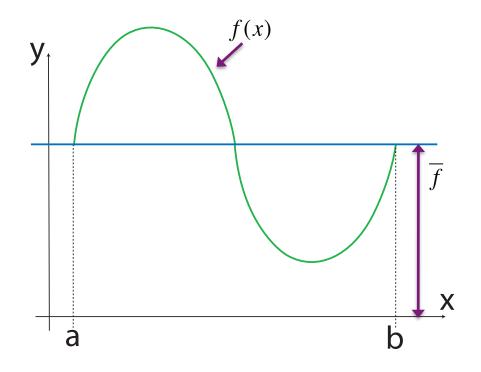
Sketch the region enclosed by the given curves and then find the area of the region.

(a)
$$y = x^2 - 2x$$
, $y = x + 4$
(b) $y = \sqrt{x}$, $y = \frac{1}{x}$, $x = \frac{1}{2}$, $x = 2$

The Definite Integral - Average Value

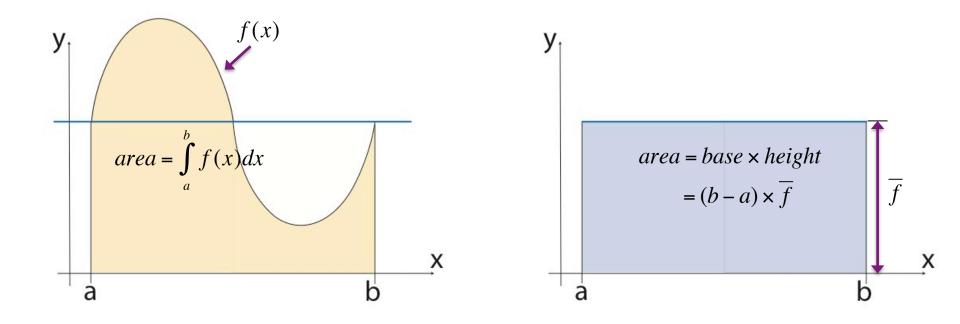
The average value of a function f on the interval from a to b is

$$\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$



For a positive function, average height = $\frac{\text{area}}{\text{width}}$

The Definite Integral - Average Value



$$\int_{a}^{b} f(x) dx = (b-a)\overline{f}$$

Application

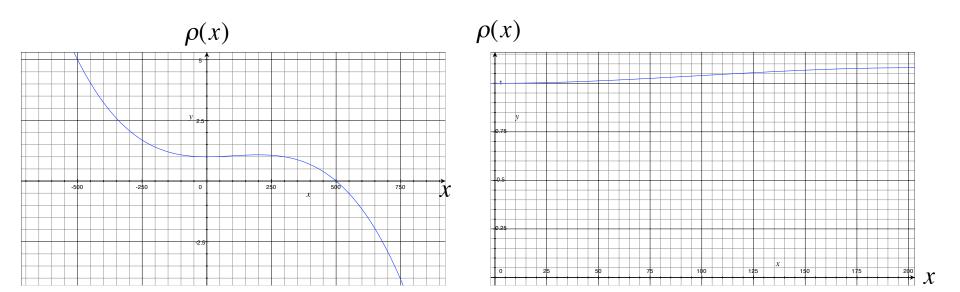
Example:

Several very skinny 2.0-m-long snakes are collected in the Amazon. Each snake has a density of

$$\rho(x) = 1 + 2 \times 10^{-8} x^2 (300 - x)$$

where ρ is measured in grams per centimeter and x is measured in centimeters from the tip of the tail.

Application

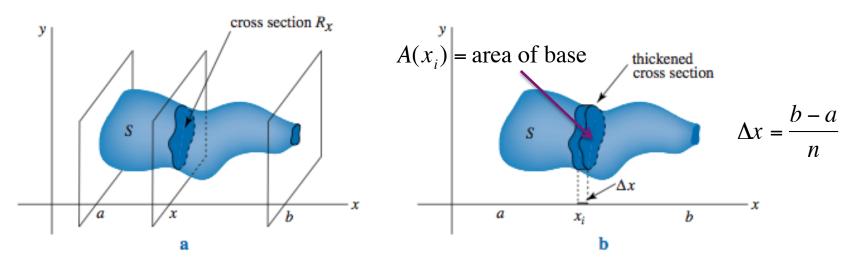


Application

(a) Find the total mass of each snake.

(b) Find the average density of each snake.

Approximating Volumes



So, the volume V of the solid $S \approx V_n$.

Integrals and Volumes

Definition:

Denote by A(x) the area of the cross-section of S by the plane perpendicular to the x-axis that passes through x. Assume that A(x) is continuous on [a,b].

Then the **volume** V of S is given by

$$V = \lim_{n \to \infty} V_n = \lim_{n \to \infty} \sum_{i=1}^n A(x_i) \Delta x = \int_a^b A(x) dx$$

provided that the limit exists.

Volumes of Solids of Revolution

Examples:

Find the volume of the solid obtained by rotating the region *R* enclosed (bounded) by the given curves about the given axis.

(a)
$$y = \frac{1}{x}$$
, $y = 0$, $x = 1$, and $x = 2$ about the *x* - axis

(b) y = 8 - x, y = 3, x = 2, and x = 5 about the y-axis