Definite (Proper) Integrals

Assumptions:

f is **continuous** on a **finite** interval [a,b].

$$\int_{a}^{b} f(x) dx = \text{real number}$$
proper integral

Improper Integrals

Why are the following definite integrals "improper"?

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

$$\int_{-\infty}^{4} e^{-5x} dx$$

$$\int_{0}^{4} \frac{1}{x} dx$$

$$\int_{1}^{4} \frac{1}{(x-2)^{2}} dx$$

Definition:

Assume that the definite integral $\int_a^a f(x) dx$ exists (i.e., is equal to a real number) for every $T \ge a$. Then we define the improper integral of f(x) on (a, ∞) by

$$\int_{a}^{\infty} f(x) dx = \lim_{T \to \infty} \left(\int_{a}^{T} f(x) dx \right)$$

provided that the limit on the right side exists.

Illustration:

$$\int_{a}^{\infty} f(x) dx = \lim_{T \to \infty} \left(\int_{a}^{T} f(x) dx \right)$$
proper integral

Examples:

Evaluate the following improper integrals.

(a)
$$\int_{1}^{\infty} \frac{1}{x} dx$$

(b)
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$

When the limit exists, we say that the integral converges.

When the limit does not exist, we say that the integral diverges.

Rule:
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx$$
 is convergent if $p > 1$ and divergent if $p \le 1$

Illustration

$$\int_{1}^{\infty} \frac{1}{x} dx$$
 diverges

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges

Application

Example:

p. 584, #35.

The concentration of a toxin in a cell is increasing at a rate of $50e^{-2t} \mu mol/L/s$, starting from a concentration of $10\mu mol/L$. If the cell is poisoned when the concentration exceeds $30\mu mol/L$, could this cell survive?

Definition:

Assume that f(x) is continuous on (a,b] but not continuous at x=a. Then we define

$$\int_{a}^{b} f(x) dx = \lim_{T \to a^{+}} \int_{T}^{b} f(x) dx$$

provided that the limit on the right side exists.

Illustration:

$$\int_{a}^{b} f(x) dx = \lim_{T \to a^{+}} \left(\int_{T}^{b} f(x) dx \right)$$
proper integral

Examples:

Evaluate the following improper integrals.

(a)
$$\int_{0}^{2} \frac{1}{\sqrt[3]{x}} dx$$

(b)
$$\int_{0}^{10} \frac{1}{x^2} dx$$

(c)
$$\int_{0}^{1} \frac{\ln x}{\sqrt{x}} dx$$

When the limit exists, we say that the integral converges.

When the limit does not exist, we say that the integral diverges.

Rule:
$$\int \frac{1}{n} dx$$

Rule:
$$\int_{0}^{1} \frac{1}{x^{p}} dx$$
 is convergent if $0 and divergent if $p \ge 1$$

Illustration

$$\int_{0}^{1} \frac{1}{x^{2}} dx$$
 diverges

$$\int_{0}^{1} \frac{1}{x^{1/3}} dx \text{ converges}$$