Definite (Proper) Integrals

Assumptions:

f is continuous on a finite
interval [a,b].
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ff(x) dx = real number
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Improper Integrals

Why are the following definite integrals “improper”?
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Improper Integrals
Type I: Infinite Limits of Integration

Definition:
Assume that the definite integral ff(x)dx
exists (i.e., is equal to a real ‘

number) for every T =a. Then we define the
improper integral of f(x) on (a, ) by

ff(x)dx = hm(ff(x)dx)

T —

provided that the limit on the right side exists.

Section 7.7



Improper Integrals
Type I: Infinite Limits of Integration

lllustration: G

ff(x)dx = hm(ff(x)dx)
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Improper Integrals
Type I: Infinite Limits of Integration

Examples:
Evaluate the following improper integrals.
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Improper Integrals
Type I: Infinite Limits of Integration

When the limit exists, we say that the integral
converges.

When the limit does not exist, we say that the
integral diverges.

Rule: fipdx is convergent if p>1 and divergent if p=l1
X
1
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Illustration

infinite area ..
finite area

1 . 1
f —dx diverges f — dx converges
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Application

Example:

p. 584, #35.

The concentration of a toxin in a cell is
increasing at a rate of 50e™ umol/L/s,
starting from a concentration of 10 umol/L.

If the cell is poisoned when the concentration
exceeds 30umol/L, could this cell survive?
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Improper Integrals
Type Il: Infinite Integrands
Definition:

Assume that f(x) is continuous on (a,b] but not
continuous at x=a. Then we define

ff(x)dx— lim ff(x)dx
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provided that the limit on the right side exists.
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Improper Integrals
Type II: Infinite Integrands

lllustration:

}f(x)dx =lim (}f(x)dx)
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Improper Integrals
Type II: Infinite Integrands

Examples:

Evaluate the following improper integrals.
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Improper Integrals
Type II: Infinite Integrands

When the limit exists, we say that the integral
converges.

When the limit does not exist, we say that the
integral diverges.

1
Rule: fipdx is convergent if 0<p<1 and divergent ifp =1
X
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Illustration

infinite area

finite area
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