Systems of Differential Equations



Predator-Prey Model

Previously, we studied a variety of models for
the growth of a single species that lives alone in
an environment.

Now, we will consider two species interacting in
the same habitat.

One species, called the prey, has an ample food
supply and the second species, called the
predator, feeds on the prey.



Predator-Prey Model

For example, consider a population of rabbits

(prey) and wolves (predators) in an isolated
forest.

Let

R(t) = # rabbits at time ¢
W (t) = # wolves at time ¢

\

Two dependent variables,
both functions of time




Predator-Prey Model

Assumption 1:

Without predators, prey will grow exponentially.

d—R=kR, k>0

dt
Without prey, predators will die out exponentially.

d—W=—rW, r>0

dt



Predator-Prey Model

Assumption 2:

There will be more encounters between the two
species if the population of either increases:

# of encounters « RW



Predator-Prey Model

Assumption 3:

Encounters are bad for prey:

d—R=kR—aRW, a>0

dt

Encounters are good for predators:

d—W=—rW+bRW, b>0

dt



Predator-Prey Model

Predator-Prey Equations:

a I
d—R = kR — aRW
dt
d—W =—rW + bRW
\_ dt /

W (tor wolves) represents the predator
R (for rabbits) represents the prey

k, r, a, and b are positive constants



Predator-Prey Model

Example:
Suppose that the populations of rabbits and

wolves are described by the predator-prey
equations

4R .08k —0.001RW

ds

dd_W — _0.02W +0.00002RW
f

where time t is measured in months.



Predator-Prey Model

Example:
(a) Graph the per capita growth rates for each
species.

(b) Suppose that initially there are 1000 rabbits
and 40 wolves. What will happen to these

populations after 2 months? (use Euler’s
Method)



Euler’s Method for a Pair of Linked
Autonomous DEs

Algorithm:

t ., =t +h
xn+1 = 'xn T f('xn’yn)h
Yot =V, +8(X,,5,)h

Algorithm In Words:

next time step = previous time step + step size

next approximation = previous approximation + rate of
change of the function at previous values x step size



Predator-Prey Model

# predator-prey model

n = 2 # number of iterations/steps

h =1 # step size

k = 0.08

a = 0.001

r = 0.02

b = 0.00002

t = [0] # array for t with initial condition entered

R = [1000] # array for R with initial condition entered

W = [40] # array for W with initial condition entered

for i in range(l, n+l):
ti = t[i-1] + h
Ri = R[i-1] + (k*R[i-1]-a*R[i-1]*W[i-1])*h
Wi = W[i-1] + (-r*W[i-1]+b*R[i-1]*W[i-1])*h
t.append(ti)
R.append(Ri)
W.append (Wi)

print(itime: >, t)
print("rabbit popultion:", R)
print ("wolf popultion:", W)

time: [0, 1, 2]
rabbit popultion: [1000, 1040.0, 1081.6]
wolf popultion: [40, 40.0, 40.032]



Predator-Prey Model

# predator-prey model
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for

500 # number of iterations/steps
# step size

.08

.001

.02

.00002

[0] # array for t with initial condition entered
[1000] # array for R with initial condition entered
[40] # array for W with initial condition entered

i in range(l, n+l):

ti = t[i-1] + h

Ri = R[i-1] + (k*R[i-1]-a*R[i-1]*W[i-1])*h
Wi = W[i-1] + (-r*W[i-1]+b*R[i-1]*W[i-1])*h
t.append(ti)

R.append(Ri)

W.append(Wi)

# plot solution

plt
plt
plt
plt
plt

.plot(t,R, label = 'rabbits')

.plot(t,W, label = 'wolves')

.title("Approximate Solution to Predator-Prey Model")
.xlabel("time")

.ylabel("population")

plt.
plt.
plt.

legend()
grid()
show()

# semilog plot

plt.plot(t,np.log(R), label = 'rabbits')
plt.plot(t,np.log(W), label = 'wolves')
plt.title("Approximate Solution to Predator-Prey Model -
plt.xlabel("time")

plt.ylabel("1ln(population)")

plt.legend()

plt.grid()

plt.show()
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Note: This code is posted on our course webpage for you to explore!



Systems of Differential Equations

The predator-prey model is an example of a
system of coupled (or linked) autonomous
differential equations.

Coupled Autonomous Differential Equations:

A pair of differential equations in which the rate of
change of each state variable depends on its own
value and on the value of the other state variable.

dx dy

" f(x,y) and g g(x,y)



Competitive Selection Model

Recall: Selection Model

When two variations of a certain population grow
at a rate proportional to their size, we can write a
pair of uncoupled autonomous DEs:

da _ db _
dt dt

ua AD

a(t)=population size of type a at time t;
u =per capita production rate of type ag;

b(t)=population size of type b at time t;
A=per capita production rate of type b.



Competitive Selection Model

Consider the case in which these two types
interact and compete for the same resources.

As the size of the total population increases, so
does competition for resources, which has a
negative effect on the growth rate for each

type.



Competitive Selection Model

Suppose that the per capita growth rate of each

type decreases linearly as a function of the total
population, a+b:

per capita growth rate of type a =y 1 -

per capita growth rate of type b= A|1 -

K, = carrying capacity of type a
K, = carrying capacity of type b



Competitive Selection Model

The coupled autonomous DEs for a competitive
selection model are given by

@=M1_a+b a and @=A
dt K dt

a+b
Kb

1 - b

a

where K, =carrying capacity of type a
K, = carrying capacity of type b



Competitive Selection Model

Example:
Suppose K, =100 and K, = 200.

(a) Graph the per capita growth rates for a and b as
functions of the total population, a+b.

(b) If a, =50 and b, = 100, what would happen to
the size of each population in the immediate future?



Newton’s Law of Cooling

Recall:

Newton’s law of cooling expresses the rate of
change of the temperature, T, of an object as a
function of the ambient temperature, A, by the
equation

dT
Z=a(A—T)
where o depends on the the size, shape, and

material of the object.



Newton’s Law of Cooling

If the object is large relative to its environment, it
will also have an effect on the ambient temperature.

Newton’s Law of Cooling can then be applied to
describe the rate of change of the ambient

temperature by the equation

dA
E=O{2(T—A)

where a, depends on the the size, shape, and heat
properties of the environment the object is in.



Newton’s Law of Cooling

The rates of change of the temperature of the
object and its environment are given by the
following system of coupled autonomous DEs:

dTl dA
S a(A-T) and S o, (T - A)

In general, a, will be smaller as the environment
becomes larger.



A Model for a Disease

Recall: Basic Model for a Disease

Suppose a disease is circulating in a population.
Individuals recover from this disease unharmed but are
susceptible to reinfection.

Let / denote the fraction of infected individuals in a
population. Then, the rate at which the fraction of
infected individuals is changing is given by

dl
= ea(l-1)-ul
P ad(1-1)-u

where o and U are positive constants.



A Model for a Disease

Exercise:

Keeping the assumptions of the basic model for
a disease, write a pair autonomous differential

equations to describe how both the proportion
of infected individuals, /, and the proportion of

susceptible individuals, S, change over time.



A Model for a Disease

Recall: This journal article on the Ebola virus (EBOV) outbreak in West Africa
was studied in Math 1LS3
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A Model for a Disease

EMETHODS

The transmission of EBOV follows SEIR (susceptible-exposed-infectious-recovered) dynamics and can be
described by the following set of ordinary differential equations (ODEs):®

L ~—B®)SI/N,
@: B(t)SI /N —oE,
‘;t S o §
T=(1-f)’YI-

After transmission of the virus, susceptible individuals S enter the exposed class E before they become
infectious individuals /that either recover and survive (R) or die. 1/o and 1/y are the average durations of
incubation and infectiousness. The case fatality rate is given by f. The transmission rate in absence of control
interventions is constant, i.e., B(f) = B. After control measures are introduced at time 1 < {, the transmission
rate was assumed to decay exponentially at rate k:*

A(t)=Be =)

i.e., the time until the transmission rate is at 50% of its initial level is f;,2 = In(2)/k. Assuming the epidemic



