Continuous Random Variables

Section 13

Continuous Random Variables

Definition:

A random variable that takes on a continuum of values is called a continuous random variable.

Continuous Random Variables

Example:
Distributions of Lengths of Boa Constrictors
The boa constrictor is a large species of snake that can grow to anywhere between 1 m and 4 m in length.

Let L be the continuous random variable that measures the length of a snake.

$$
L: S \rightarrow[1,4]
$$

Continuous Random Variables

The lengths of 500 boas are recorded below:

Table 13.1

Length range (m)	Frequency	Relative frequency
$[1,1.5)$	20	0.04
$[1.5,2)$	58	0.116
$[2,2.5)$	122	0.244
$[2.5,3)$	180	0.36
$[3,3.5)$	86	0.172
$[3.5,4)$	34	0.068

Note: relative frequency $=$ frequency/500 = probability

Continuous Random Variables

Histogram for Probability Mass:

FIGURE 13.1

Histogram: the heights represent the probability

The probability that a randomly selected boa is between 2.5 m and 3 m in length is the height of the rectangle over $[2.5,3)$, i.e., 0.36 .

Continuous Random Variables

To draw a histogram representing probability density, we re-label the vertical axis so that the probability that L belongs to an interval is the area of the rectangle above that interval.

Continuous Random Variables

Note:

probability mass
 $=$ probability density

Continuous Random Variables

For example, consider the interval $[2.5,3)$. The probability that L falls in this range is 0.36 .

Now, we want this value to be the area of the rectangle over $[2.5,3)$, so
probability density (height) $=0.36 /(3-2.5)=0.72$

Continuous Random Variables

Histogram for Probability Density:

Figure 13.2

Histogram: the areas represent the probability

The probability that a randomly selected boa is between 2.5 m and 3 m in length is the area of the rectangle above $[2.5,3)$, i.e. 0.36 .

Continuous Random Variables

To get a more precise probability mass (or density) function, we divide [1,4] into smaller subintervals:

Table 13.2

Length range (m)	Frequency	Relative frequency
$[1,1.25)$	6	0.012
$[1.25,1.5)$	14	0.028
$[1.5,1.75)$	30	0.06
$[1.75,2)$	28	0.056
$[2,2.25)$	50	0.1
$[2.25,2.5)$	72	0.144
$[2.5,2.75)$	104	0.208
$[2.75,3)$	76	0.152
$[3,3.25)$	52	0.104
$[3.25,3.5)$	34	0.068
$[3.5,3.75)$	28	0.056
$[3.75,4)$	6	0.012

Continuous Random Variables

As we continue to increase the number of subintervals, we obtain a more and more refined histogram.

FIGURE 13.4

Histograms based on 24 and 48 subintervals

Continuous Random Variables

Riemann Sum:

FIGURE 13.5

Probability of boa length between 1.75 m and 2 m

The probability that a randomly chosen boa is between 1.75 m and 2 m in length is the sum of the areas of the rectangles over the interval [1.75, 2).

Continuous Random Variables

To obtain the probability density function, we let the length of the intervals approach 0 and the number of rectangles approach ∞.

Figure 13.6

From a histogram to a density function

Probability Density Functions

Definition: Defining Properties of a PDF
Assume that the interval / represents the range of a continuous random variable X. A function $f(x)$ can be a probability density function if
(1) $f(x) \geq 0$ for all $x \in I$.
(2) $\int_{I} f(x) d x=1$.

Probability Density Functions

Example:
Show that $f(x)=\frac{2}{\pi\left(1+x^{2}\right)}$
could be a probability density function for some continuous random variable on $[0, \infty)$.

Calculating Probabilities

For a continuous random variable, we calculate the probability that a random variable belongs to an interval of real numbers.

The probability that an outcome X is between a and b is the area under the graph of $f(x)$ on $[a, b]$:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Calculating Probabilities

The probability that an outcome is equal to a particular value is zero.

$$
P(a \leq X \leq a)=\int_{a}^{a} f(x) d x=0
$$

For this reason, including or excluding the endpoints of an interval does not affect the probability, i.e.,

$$
P(a \leq X \leq b)=P(a \leq X<b)=P(a<X \leq b)=P(a<X<b)
$$

Calculating Probabilities

Example \#32:

The distance between a seed and the plant it came from is modelled by the density function

$$
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad x \in[0, \infty) .
$$

where x represents the distance (in metres),
What is the probability that a seed will be found farther than 5 m from the plant?

Cumulative Distribution Function

Definition:

Suppose that $f(x)$ is a probability density function defined on an interval $[a, b]$. The function $F(x)$ defined by

$$
F(x)=P(X \leq x)=\int_{a}^{x} f(t) d t
$$

for all x in $[a, b]$ is called a cumulative distribution function of $f(x)$.

Cumulative Distribution Function

Example \#30 (modified):

Suppose that the lifetime of an insect is given by the probability density function

$$
f(t)=0.2 e^{-0.2 t} \quad t \in[0, \infty) .
$$

where t is measured in days,
(a) Determine the corresponding cumulative distribution function, $F(t)$. (b) Find the probability that the insect will live between 5-7 days.

Cumulative Distribution Function

Properties of the CDF:

Assume that f is a probability density function, defined and continuous on an interval [a,b]. The left end a could be a real number or negative infinity; the right end b could be a real number or infinity. Denote by F the associated cumulative distribution function. Then
(1) $0 \leq F(x) \leq 1$ for all $x \in[a, b]$.
(2) $F(x)$ is continuous and non-decreasing.
(3) $\lim _{x \rightarrow a} F(x)=0$ and $\lim _{x \rightarrow b} F(x)=1$.

The Mean and the Variance

Definition:

Let X be a continuous random variable with probability density function $f(x)$, defined on an interval $[a, b]$.

The mean (or the expected value) of X is given by

$$
\mu=E(X)=\int_{a}^{b} x f(x) d x
$$

The variance of X is

$$
\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]=\int_{a}^{b}(x-\mu)^{2} f(x) d x
$$

The Mean and the Variance

Example \#24:

Consider the continuous random variable X given by the probability density function

$$
f(x)=0.3+0.2 x \quad \text { for } \quad 0 \leq x \leq 2
$$

Find the probability that the values of X are at least one standard deviation above the mean.

