Section 13

Definition:

A random variable that takes on a *continuum* of values is called a continuous random variable.

Example:

Distributions of Lengths of Boa Constrictors The boa constrictor is a large species of snake that can grow to anywhere between 1 m and 4 m in length.

Let *L* be the continuous random variable that measures the length of a snake.

$$L: S \rightarrow [1,4]$$

The lengths of 500 boas are recorded below:

Length range (m)	Frequency	Relative frequency
[1, 1.5)	20	0.04
[1.5, 2)	58	0.116
[2, 2.5)	122	0.244
[2.5, 3)	180	0.36
[3, 3.5)	86	0.172
[3.5, 4)	34	0.068

Table 13.1

Note: relative frequency = frequency/500 = probability

Histogram for Probability Mass:

The probability that a randomly selected boa is between 2.5 m and 3 m in length is the <u>height</u> of the rectangle over [2.5, 3), i.e., 0.36.

To draw a histogram representing probability **density**, we re-label the vertical axis so that the probability that *L* belongs to an interval is the <u>area</u> of the rectangle above that interval.

Note:

probability mass length of interval = probability density

For example, consider the interval [2.5, 3]. The probability that *L* falls in this range is 0.36.

Now, we want this value to be the <u>area</u> of the rectangle over [2.5, 3), so

probability density (height) = 0.36/(3-2.5) = 0.72

Histogram for Probability Density:

The probability that a randomly selected boa is between 2.5 m and 3 m in length is the <u>area</u> of the rectangle above [2.5, 3), i.e. 0.36. section 13

To get a more precise probability mass (or density) function, we divide [1,4] into smaller subintervals:

Table 13.2

Length range (m)	Frequency	Relative frequency
[1, 1.25)	6	0.012
[1.25, 1.5)	14	0.028
[1.5, 1.75)	30	0.06
[1.75, 2)	28	0.056
[2, 2.25)	50	0.1
[2.25, 2.5)	72	0.144
[2.5, 2.75)	104	0.208
[2.75, 3)	76	0.152
[3, 3.25)	52	0.104
[3.25, 3.5)	34	0.068
[3.5, 3.75)	28	0.056
[3.75, 4)	6	0.012

As we continue to increase the number of subintervals, we obtain a more and more refined histogram.

FIGURE 13.4

Histograms based on 24 and 48 subintervals

Riemann Sum:

The probability that a randomly chosen boa is between 1.75 m and 2 m in length is the sum of the areas of the rectangles over the interval [1.75, 2].

To obtain the probability density **function**, we let the length of the intervals approach 0 and the number of rectangles approach ∞ .

FIGURE 13.6

From a histogram to a density function

Probability Density Functions

Definition: Defining Properties of a PDF Assume that the interval *I* represents the range of a continuous random variable *X*. A function f(x) can be a probability density function if

(1)
$$f(x) \ge 0$$
 for all $x \in I$.
(2) $\int_{I} f(x) dx = 1$.

Probability Density Functions

Example:

Show that
$$f(x) = \frac{2}{\pi(1+x^2)}$$

could be a probability density function for some continuous random variable on $[0, \infty)$.

Calculating Probabilities

For a continuous random variable, we calculate the probability that a random variable belongs to an *interval* of real numbers.

The probability that an outcome X is between a and b is the area under the graph of f(x) on [a,b]:

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$

Calculating Probabilities

The probability that an outcome is *equal* to a particular value is zero.

$$P(a \le X \le a) = \int_{a}^{a} f(x)dx = 0$$

For this reason, including or excluding the endpoints of an interval does not affect the probability, i.e.,

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$$

Calculating Probabilities

Example #32:

The distance between a seed and the plant it came from is modelled by the density function

$$f(x) = \frac{2}{\pi(1+x^2)}$$
 $x \in [0,\infty).$

where x represents the distance (in metres),

What is the probability that a seed will be found farther than 5 m from the plant?

Cumulative Distribution Function

Definition:

Suppose that f(x) is a probability density function defined on an interval [a,b]. The function F(x) defined by

$$F(x) = P(X \le x) = \int_{a}^{x} f(t)dt$$

for all x in [a,b] is called a cumulative distribution function of f(x).

Cumulative Distribution Function

Example #30 (modified):

Suppose that the lifetime of an insect is given by the probability density function

$$f(t) = 0.2e^{-0.2t}$$
 $t \in [0,\infty).$

where *t* is measured in days,

(a) Determine the corresponding cumulative distribution function, *F(t)*.
(b) Find the probability that the insect will live between 5-7 days.

Cumulative Distribution Function

Properties of the CDF:

Assume that f is a probability density function, defined and continuous on an interval [a,b]. The left end a could be a real number or negative infinity; the right end b could be a real number or infinity. Denote by F the associated cumulative distribution function. Then (1) $0 \le F(x) \le 1$ for all $x \in [a,b]$. (2) F(x) is continuous and non-decreasing. (3) $\lim F(x) = 0$ and $\lim F(x) = 1$.

The Mean and the Variance

Definition:

Let X be a continuous random variable with probability density function f(x), defined on an interval [a,b].

The mean (or the expected value) of X is given by

$$\mu = E(X) = \int_{a}^{b} x f(x) dx$$

The variance of X is

$$\operatorname{var}(X) = E[(X - \mu)^2] = \int_{a}^{b} (x - \mu)^2 f(x) dx$$

The Mean and the Variance

Example #24:

Consider the continuous random variable *X* given by the probability density function

$$f(x) = 0.3 + 0.2x$$
 for $0 \le x \le 2$.

Find the probability that the values of X are at least one standard deviation above the mean.