Basics of Probability Theory

Section 3

Elements of Set Theory

An empty set (denoted by \varnothing) is a set that contains no elements.

A set A is a subset of a set S , denoted by $A \subseteq S$, if A is empty or contains some or all of the elements of S.

For any set $\mathrm{A}, \varnothing \subseteq A$, and $A \subseteq A$.

Elements of Set Theory

Definition: Intersection of Sets
The intersection $A \cap B$ of sets A and B is the set of elements that belong to both A and B.
Note that $A \cap B=B \cap A$.

Definition: Mutually Exclusive Events
Two events A and B are said to be mutually
exclusive if they are disjoint, i.e., if $A \cap B=\varnothing$.

Elements of Set Theory

Definition: Union of Sets
The union $A \cup B$ of sets A and B is the set of elements that belong to either A or B .
Note that $A \cup B=B \cup A$.

Definition: Compliment of a Set The compliment A^{C} of a subset $A \subseteq S$ is the set of all elements in S that are not in A.
Note that

$$
S^{C}=\varnothing, \quad \varnothing^{C}=S, \quad\left(A^{C}\right)^{C}=A, \quad A \cup A^{C}=S, \quad A \cap A^{C}=\varnothing .
$$

Exercise

Consider the random experiment of rolling a fair, 6 -sided die. Let A be the event of rolling an even number and let B be the event of rolling a number greater than 2.

Determine the following:
(a) $A \cap B$
(b) $A \cup B$
(c) A^{c}
(d) A set D that is disjoint from both A and B.

Probability

Definition: Probability
Let S denote a sample space. A probability is a function P that assigns, to each event A in S, a unique real number $P(A)$, called the probability of A .
The function P satisfies the following properties:
(i) $0 \leq P(A) \leq 1$ for any event $A \subseteq S$.
(ii) $P(\varnothing)=0$ and $P(S)=1$.
(iii) If A and B are mutually exclusive events,
then $P(A \cup B)=P(A)+P(B)$.

Probability

Probability as Area:

Let the area of the sample space S be 1 and the area of the empty set to be 0 . Any other event (subset of S) has area between 0 and 1, i.e.,

$$
\text { for } A \subseteq S, \quad P(A)=\text { area of } A
$$

Exercise

Consider the random experiment of rolling a fair, 6 -sided die. Let A be the event of rolling an even number and let B be the event of rolling a number greater than 2.

Determine $P(A \cap B)$.

Probability

Theorem: Probability of a Complimentary Event If A is an event, then $P\left(A^{C}\right)=1-P(A)$.

Theorem: Probability of the Union of Two Events If A and B are two events, then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Exercise

Consider the random experiment of rolling a fair, 6 -sided die. Let A be the event of rolling an even number and let B be the event of rolling a number greater than 2.

Determine the following:
(a) $P\left(B^{c}\right) \quad$ (b) $P(A \cup B)$

Assigning Probability to Events

Assume that the sample space of an experiment is finite, i.e., that it contains n distinct, simple events $E_{1}, E_{2}, \cdots, E_{n}$.

Then, $E_{1} \cup E_{2} \cup \cdots \cup E_{n}=S$
and $P(S)=P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots+P\left(E_{n}\right)=1$.

Assigning Probability to Events

Theorem: Assigning Probabilities to Equally Likely Simple Events
Assume that S is a finite sample space in which all outcomes (simple sets) are equally likely. The probability of an event $A \subseteq S$ is

$$
P(A)=\frac{|A|}{|S|}
$$

Assigning Probability to Events

Recall: Lion Population with Immigration Consider a population of lions described by the stochastic dynamical system

$$
p_{t+1}=p_{t}+I_{t} \quad \text { where } \quad I_{t}= \begin{cases}12 & \text { with } 50 \% \text { chance } \\ 0 & \text { with } 50 \% \text { chance }\end{cases}
$$

and time $t=0,1,2, \ldots$ is measured in years. If initially there are 160 lions, determine the possible population sizes 3 years later and the probability of each population size occurring.

