The Centre and Spread of a Distribution

Sections 7 and 8

Statistics on a Distribution

- Often, important information about a distribution is realized by studying its centre and spread.
- One way to do this is to determine the mean, variance, and standard deviation of the distribution.

Mean or Expected Value

Example: Marks
Consider the following set of marks for 10 students:
Test 1, out of 40:
$20,24,24,27,27,29,29,29,29,36$

Mark	20	24	27	29	36
Frequency	1	2	2	4	1
Relative Frequency	$1 / 10$	$2 / 10$	$2 / 10$	$4 / 10$	$1 / 10$

What is the average of these marks?

Mean or Expected Value

Definition:

Let X be a discrete random variable. The mean or the expected value of X is the number

$$
E(X)=\sum_{x} x P(X=x)=\sum_{x} x p(x)
$$

where the sum goes over all values x for which $p(x)=P(X=x)$ is not zero.

Exercise

Example: Leopard Population with Immigration Consider a population of leopards p_{t} modelled by

$$
p_{t+1}=p_{t}+I_{t} \text { where } I_{t}= \begin{cases}10 & \text { with a } 90 \% \text { chance } \\ -100 & \text { with a } 10 \% \text { chance }\end{cases}
$$

Suppose that initially there are 300 leopards. Determine the expected number of leopards after $\mathbf{2}$ years.

Mean or Expected Value of a Function

of a Random Variable

Definition:

Assume that X is a discrete random variable and that $p(x)=P(X=x)$ is its probability mass function. Let $g(x)$ be a function of x. The expected value of the random variable $g(X)$ is

$$
E(g(X))=\sum_{x} g(x) P(X=x)=\sum_{x} g(x) p(x)
$$

where the sum goes over all values x for which $\mathrm{p}(\mathrm{x})$ is not zero.

Properties of the Expected Value

Theorem:

Let X and Y be discrete random variables and a and b be real numbers. Then
(1) $E(a X+b)=a E(X)+b$
(2) $X \pm Y$ is a discrete random variable and $E(X \pm Y)=E(X) \pm E(Y)$

The Spread of a Distribution

Example: Marks
Consider the following sets of marks for 10 students:
Test 1, out of 40:
$20,20,20,20,20,40,40,40,40,40$

Test 2, out of 40:
$30,30,30,30,30,30,30,30,30,30$
Compare the spreads of Test 1 and Test 2 scores.

Variance

Definition:

Assume that X is a random variable with mean $\mu=E(X)$. The variance of X is the real number

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]=E\left[(X-E(X))^{2}\right]
$$

Variance

In words:
The variance of a random variable X is the expected value of the difference (squared) between X and its mean.

The larger the variance, the larger the spread of a distribution.

Standard Deviation

Definition:

Let X be a random variable whose variance is $\sigma^{2}=\operatorname{var}(X)$. The standard deviation of X is the number

$$
\sigma=\sqrt{\operatorname{var}(X)}
$$

The standard deviation is measured in the same units as the random variable X.

Exercise

Example: Leopard Population with Immigration Determine the variance and standard deviation for the number of leopards after $\mathbf{2}$ years.

x	$p(x)$
100	0.01
210	0.18
320	0.81

Properties of the Variance

Let X be a random variable and a and b be real numbers. Then
(1) $\operatorname{var}(a X+b)=a^{2} \operatorname{var}(X)$
(2) $\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$

