The Centre and Spread of a Distribution

Sections 7 and 8

Statistics on a Distribution

 Often, important information about a distribution is realized by studying its centre and spread.

 One way to do this is to determine the mean, variance, and standard deviation of the distribution.

Mean or Expected Value

Example: <u>Marks</u> Consider the following set of marks for 10 students:

Test 1, out of 40:

20, 24, 24, 27, 27, 29, 29, 29, 29, 36

Mark	20	24	27	29	36
Frequency	1	2	2	4	1
Relative Frequency	1/10	2/10	2/10	4/10	1/10

What is the average of these marks?

Mean or Expected Value

Definition:

Let X be a discrete random variable. The mean or the expected value of X is the number

$$E(X) = \sum_{x} xP(X = x) = \sum_{x} xp(x)$$

where the sum goes over all values x for which p(x)=P(X=x) is not zero.

Exercise

Example: Leopard Population with Immigration Consider a population of leopards p_t modelled by

$$p_{t+1} = p_t + I_t$$
 where $I_t = \begin{cases} 10 & \text{with a 90\% chance} \\ -100 & \text{with a 10\% chance} \end{cases}$

Suppose that initially there are 300 leopards. Determine the expected number of leopards after **2** years.

Mean or Expected Value of a Function of a Random Variable

Definition:

Assume that X is a discrete random variable and that p(x)=P(X=x) is its probability mass function. Let g(x) be a function of x. The expected value of the random variable g(X) is

$$E(g(X)) = \sum_{x} g(x)P(X = x) = \sum_{x} g(x)p(x)$$

where the sum goes over all values x for which p(x) is not zero.

Properties of the Expected Value

Theorem:

Let X and Y be discrete random variables and a and b be real numbers. Then

- (1) E(aX+b)=aE(X)+b
- (2) X±Y is a discrete random variable and
- $E(X\pm Y)=E(X)\pm E(Y)$

The Spread of a Distribution

Example: <u>Marks</u> Consider the following sets of marks for 10 students:

Test 1, out of 40:

20, 20, 20, 20, 20, 40, 40, 40, 40, 40

<u>Test 2, out of 40</u>:

30, 30, 30, 30, 30, 30, 30, 30, 30, 30

Compare the spreads of Test 1 and Test 2 scores.

Variance

Definition:

Assume that X is a random variable with mean $\mu = E(X)$. The variance of X is the real number

$$\sigma^{2} = \operatorname{var}(X) = E\left[(X - \mu)^{2}\right] = E\left[(X - E(X))^{2}\right]$$

Variance

In words:

The variance of a random variable X is the expected value of the difference (squared) between X and its mean.

The larger the variance, the larger the spread of a distribution.

Standard Deviation

Definition:

Let X be a random variable whose variance is $\sigma^2 = var(X)$. The standard deviation of X is the number

$$\sigma = \sqrt{\operatorname{var}(X)}$$

The standard deviation is measured in the same units as the random variable *X*.

Exercise

Example: Leopard Population with Immigration Determine the variance and standard deviation for the number of leopards after **2** years.

x	p(x)
100	0.01
210	0.18
320	0.81

Properties of the Variance

Let X be a random variable and a and b be real numbers. Then (1) $var(aX+b)=a^2var(X)$ (2) $var(X)=E(X^2)-[E(X)]^2$