## Introduction to Functions of Several Variables (Basic Definitions and Notation) Section 1

### Single Variable Calculus

#### **Definition:**

A real-valued function *f* of one variable is a rule that assigns to each real number *x* in a set D called the domain a unique real number *y* in a set R called the range.

We denote this by y = f(x).

### Single Variable Calculus

#### Domain of *f(x)*:

The set of all *x*-values for which *f(x)* is defined as a real number. (All possible *x*-values the equation will accept as input).

Range of *f(x)*:

The set of all *y*-values that *f* can attain. (All possible output values).

### Single Variable Calculus



#### **Definition:**

A real-valued function *f* of two variables is a rule that assigns to each ordered pair of real numbers (*x*,*y*) in a set *D* called the domain a unique real number *z* in a set *R* called the range.

We denote this by

$$z = f(x, y).$$

#### Domain of *f(x,y)*:

The set of all ordered pairs (x,y)for which f(x,y) is a real number. (A subset of the xy-plane,  $\mathbb{R}^2$ ).

**Range of** *f*(*x*,*y*): The set of all *z*-values that *f* can attain. (A subset of the real number line, R ).



The **graph** of a function z=f(x,y) of two variables is the set of points (x,y,z) in the space  $\mathbb{R}^3$  such that z=f(x,y) for some (x,y) in the domain of f.



**Example**: <u>Body Mass Index</u>

$$BMI(m,h) = \frac{m}{h^2}$$

where m is a person's mass in kilograms and h their height in metres.

#### *BMI* is the **dependent variable**; *m* and *h* are the two **independent variables**.

#### Example: Body Mass Index

| WEIGHT Ibs    | 100         | 105  | 110  | 115  | 120  | 125  | 130     | 135  | 140  | 145  | 150  | 155        | 160  | 165  | 170  | 175   | 180  | 185  | 190  | 195  | 200             | 205  | 210  | 215  |
|---------------|-------------|------|------|------|------|------|---------|------|------|------|------|------------|------|------|------|-------|------|------|------|------|-----------------|------|------|------|
| kgs           | 45.5        | 47.7 | 50.0 | 52.3 | 54.5 | 56.8 | 59.1    | 61.4 | 63.6 | 65.9 | 68.2 | 70.5       | 72.7 | 75.0 | 77.3 | 79.5  | 81.8 | 84.1 | 86.4 | 88.6 | 90.9            | 93.2 | 95.5 | 97.7 |
| HEIGHT in/cm  | Underweight |      |      |      |      |      | Healthy |      |      |      |      | Overweight |      |      |      | Obese |      |      |      |      | Extremely obese |      |      |      |
| 5'0" - 152.4  | 19          | 20   | 21   | 22   | 23   | 24   | 25      | 26   | 27   | 28   | 29   | 30         | 31   | 32   | 33   | 34    | 35   | 36   | 37   | 38   | 39              | 40   | 41   | 42   |
| 5'1" - 154.9  | 18          | 19   | 20   | 21   | 22   | 23   | 24      | 25   | 26   | 27   | 28   | 29         | 30   | 31   | 32   | 33    | 34   | 35   | 36   | 36   | 37              | 38   | 39   | 40   |
| 5'2" - 157.4  | 18          | 19   | 20   | 21   | 22   | 22   | 23      | 24   | 25   | 26   | 27   | 28         | 29   | 30   | 31   | 32    | 33   | 33   | 34   | 35   | 36              | 37   | 38   | 39   |
| 5'3" - 160.0  | 17          | 18   | 19   | 20   | 21   | 22   | 23      | 24   | 24   | 25   | 26   | 27         | 28   | 29   | 30   | 31    | 32   | 32   | 33   | 34   | 35              | 36   | 37   | 38   |
| 5'4" - 162.5  | 17          | 18   | 18   | 19   | 20   | 21   | 22      | 23   | 24   | 24   | 25   | 26         | 27   | 28   | 29   | 30    | 31   | 31   | 32   | 33   | 34              | 35   | 36   | 37   |
| 5'5" - 165.1  | 16          | 17   | 18   | 19   | 20   | 20   | 21      | 22   | 23   | 24   | 25   | 25         | 26   | 27   | 28   | 29    | 30   | 30   | 31   | 32   | 33              | 34   | 35   | 35   |
| 5'6" - 167.6  | 16          | 17   | 17   | 18   | 19   | 20   | 21      | 21   | 22   | 23   | 24   | 25         | 25   | 26   | 27   | 28    | 29   | 29   | 30   | 31   | 32              | 33   | 34   | 34   |
| 5'7" - 170.1  | 15          | 16   | 17   | 18   | 18   | 19   | 20      | 21   | 22   | 22   | 23   | 24         | 25   | 25   | 26   | 27    | 28   | 29   | 29   | 30   | 31              | 32   | 33   | 33   |
| 5'8" - 172.7  | 15          | 16   | 16   | 17   | 18   | 19   | 19      | 20   | 21   | 22   | 22   | 23         | 24   | 25   | 25   | 26    | 27   | 28   | 28   | 20   | 30              | 31   | 32   | 32   |
| 5'9" - 175.2  | 14          | 15   | 16   | 17   | 17   | 18   | 19      | 20   | 20   | 21   | 22   | 22         | 23   | 24   | 25   | 25    | 26   | 27   | 28   | 28   | 29              | 30   | 31   | 31   |
| 5'10" - 177.8 | 14          | 15   | 15   | 16   | 17   | 18   | 18      | 19   | 20   | 20   | 21   | 22         | 23   | 23   | 24   | 25    | 25   | 26   | 27   | 28   | 28              | 29   | 30   | 30   |
| 5'11" - 180.3 | 14          | 14   | 15   | 16   | 16   | 17   | 18      | 18   | 19   | 20   | 21   | 21         | 22   | 23   | 23   | 24    | 25   | 25   | 26   | 27   | 28              | 28   | 29   | 30   |
| 6'0" - 182.8  | 13          | 14   | 14   | 15   | 16   | 17   | 17      | 18   | 19   | 19   | 20   | 21         | 21   | 22   | 23   | 23    | 24   | 25   | 25   | 26   | 27              | 27   | 28   | 29   |
| 6'1" - 185.4  | 13          | 13   | 14   | 15   | 15   | 16   | 17      | 17   | 18   | 19   | 19   | 20         | 21   | 21   | 22   | 23    | 23   | 24   | 25   | 25   | 26              | 27   | 27   | 28   |
| 6'2" - 187.9  | 12          | 13   | 14   | 14   | 15   | 16   | 16      | 17   | 18   | 18   | 19   | 19         | 20   | 21   | 21   | 22    | 23   | 23   | 24   | 25   | 25              | 26   | 27   | 27   |
| 6'3" - 190.5  | 12          | 13   | 13   | 14   | 15   | 15   | 16      | 16   | 17   | 18   | 18   | 19         | 20   | 20   | 21   | 21    | 22   | 23   | 23   | 24   | 25              | 25   | 26   | 26   |
| 6'4" - 193.0  | 12          | 12   | 13   | 14   | 14   | 15   | 15      | 16   | 17   | 17   | 18   | 18         | 19   | 20   | 20   | 21    | 22   | 22   | 23   | 23   | 24              | 25   | 25   | 26   |

BMI Chart

#### **Example**: Body Mass Index

Compute BMI(60,h) and BMI(m,1.7) and analyze the resulting functions.

What is the natural domain of BMI? What is its restricted domain?

#### Domain

#### **Example:**

Find and sketch the domain of each function.

(a) 
$$f(x,y) = \ln(x+y-1)$$
 (b)  $h(x,y) = \frac{3xy}{x-xy^2}$ 

#### Range

#### **Example:**

#### Determine the range of each function.

(a) 
$$f(x, y) = \ln(x + y - 1)$$
 (b)  $g(x, y) = e^{1 - x^2 - y^2}$ 

#### **Linear Functions:**

Linear functions in two variables are of the form

$$f(x,y) = ax + by + c$$

where *a*, *b*, and *c* are real numbers.

'linear' because the exponent of both x and y is 1

Domain: all of R<sup>2</sup>

Graph: plane

**Example:** 
$$f(x,y) = 6 - 3x - 2y$$

\*Note: A linear functions is just a special case of a polynomial function (next) section 1

#### **Polynomial Functions:**

A polynomial functions in two variables is a sum of terms of the form

 $cx^ky^l$ 

where *c* is a real number and *k* and *l* are non-negative integers.

Domain: all of R<sup>2</sup>

Examples:

$$f(x,y) = 1 - x^2 - y^2$$

$$g(x,y) = 3xy + x^4y^3 - 1$$

#### **Rational Functions:**

A rational function in two variables is a quotient of two polynomials in two variables.

# <u>Domain</u>: all of R<sup>2</sup> except points at which the denominator = 0

Examples:

$$f(x,y) = \frac{x-y}{1+x^2+y^2} \qquad g(x,y) = \frac{3xy+x^4y^3-1}{x^2-y^2}$$

### Graphs

#### **Example:**

#### Sketch the graphs of each function.

(a) 
$$f(x, y) = \sqrt{x^2 + y^2}$$
  
(b)  $g(x, y) = 1 - x^2 - y^2$   
(c)  $h(x, y) = \sqrt{1 - x^2 - y^2}$