Introduction to Functions of Several Variables

(Basic Definitions and Notation)
Section 1

Single Variable Calculus

Definition:

A real-valued function f of one variable is a rule that assigns to each real number x in a set D called the domain a unique real number y in a set R called the range.

We denote this by $y=f(x)$.

Single Variable Calculus

Domain of $f(x)$:

The set of all x-values for which $f(x)$ is defined as
a real number. (All possible x-values the equation will accept as input).

Range of $f(x)$:
The set of all y-values that f can attain. (All possible output values).

Single Variable Calculus

The graph of a function f is a set of all ordered pairs (points) (x, y) where x is in the domain of f and $y=f(x)$.

Functions of Two Variables

Definition:

A real-valued function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D called the domain a unique real number z in a set R called the range.

We denote this by

$$
z=f(x, y)
$$

Functions of Two Variables

Domain of $f(x, y)$:

The set of all ordered pairs (x, y) for which $f(x, y)$ is a real number. (A subset of the $x y$-plane, R^{2}).

Range of $f(x, y)$:
The set of all z-values that f can attain. (A subset of the real number line, R).

Functions of Two Variables

The graph of a function $z=f(x, y)$ of two variables is the set of points (x, y, z) in the space R^{3} such that $z=f(x, y)$ for some (x, y) in the domain of f.

Functions of Two Variables

Example: Body Mass Index

$$
B M I(m, h)=\frac{m}{h^{2}}
$$

where m is a person's mass in kilograms and h their height in metres.
$B M I$ is the dependent variable;
m and h are the two independent variables.

Functions of Two Variables

Example: Body Mass Index

BMI Chart

Functions of Two Variables

Example: Body Mass Index
Compute $\operatorname{BMI}(60, h)$ and $\operatorname{BMI}(m, 1.7)$ and analyze the resulting functions.

What is the natural domain of BMI? What is its restricted domain?

Domain

Example:

Find and sketch the domain of each function.

$$
\begin{array}{ll}
\text { (a) } f(x, y)=\ln (x+y-1) & \text { (b) } h(x, y)=\frac{3 x y}{x-x y^{2}}
\end{array}
$$

Range

Example:
 Determine the range of each function.

(a) $f(x, y)=\ln (x+y-1)$
(b) $g(x, y)=e^{1-x^{2}-y^{2}}$

Functions of Two Variables

Linear Functions:

Linear functions in two variables are of the form

$$
f(x, y)=a x+b y+c
$$

where a, b, and c are real numbers.
'linear' because the exponent of both x and y is 1

Domain: all of R^{2}
Graph: plane
Example: $f(x, y)=6-3 x-2 y$

Functions of Two Variables

Polynomial Functions:

A polynomial functions in two variables is a sum of terms of the form

$$
c x^{k} y^{l}
$$

where c is a real number and k and $/$ are nonnegative integers.

Domain: all of R^{2}
Examples:

$$
f(x, y)=1-x^{2}-y^{2} \quad g(x, y)=3 x y+x^{4} y^{3}-1
$$

Functions of Two Variables

Rational Functions:

A rational function in two variables is a quotient of two polynomials in two variables.

Domain: all of R^{2} except points at which the denominator $=0$

Examples:

$$
f(x, y)=\frac{x-y}{1+x^{2}+y^{2}} \quad g(x, y)=\frac{3 x y+x^{4} y^{3}-1}{x^{2}-y^{2}}
$$

Graphs

Example:
Sketch the graphs of each function.
(a) $f(x, y)=\sqrt{x^{2}+y^{2}}$
(b) $g(x, y)=1-x^{2}-y^{2}$
(c) $h(x, y)=\sqrt{1-x^{2}-y^{2}}$

