Local Extreme Values

** Note: We will not study absolute extreme values in this course.

Section 10

Maximum and Minimum Values

Definition:

A function $f(x, y)$ has a local maximum at (a, b) if $f(a, b) \geq f(x, y)$ when (x, y) is near (a, b).

The number $f(a, b)$ is called
 a local maximum value.

Maximum and Minimum Values

Definition:

A function $f(x, y)$ has a local minimum at (a, b) if $f(a, b) \leq f(x, y)$ when (x, y) is near (a, b).

The number $f(a, b)$ is called
 a local minimum value.

The Meaning of "Near"

Fermat's Theorem

If a function $f(x, y)$ has a local minimum or a local maximum at (a, b), then (a, b) is a critical point of f.

Critical Points

Definition:

A point (a, b) in the domain of a function $f(x, y)$ is called a critical point if either
(a) $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$, or
(b) at least one of $f_{x}(a, b)$ or $f_{y}(a, b)$ does not exist.

Critical Points

Some interesting cases:

(a) $f(x, y)=x^{2}$
(b) $f(x, y)=\sqrt{x^{2}+y^{2}}$

(c) $f(x, y)=\sin x-\sin y$

Critical Points

Some interesting cases:

(d) $f(x, y)=e^{-x^{2}-y^{2}}$

Critical Points

Some interesting cases:

(e) $f(x, y)=\frac{x^{3}-3 x}{1+y^{2}}$

Critical Points

Some interesting cases:

$$
\text { (f) } f(x, y)=x^{2}-y^{2}
$$

Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with centre (a, b) and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

Second Derivatives Test

Let $D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$.
(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local min.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local max.
(c) If $D<0$, then $f(a, b)$ is not a local max or min
and we say (a, b) is a saddle point of f.

Note:
If $D=0$, the test gives no information: f could have a local max or min at (a, b) or (a, b) could be a saddle point of f.

Second Derivatives Test

Example:

Find the local minimum and maximum values
and saddle points (if any) of $f(x, y)=x^{2}+y^{2}+2 x y^{2}$.

When The Second Derivatives Test Does Not Apply

Example:

For the function to the right, it can be shown that $(0,0)$ is

$$
f(x, y)=x^{3}-3 x y^{2}
$$

the only critical point of f
and that $D(0,0)=0$ and so the second derivatives test is inconclusive.

What is (0,0)?

