Local Extreme Values

** Note: We will not study absolute extreme values in this course.

Section 10

Maximum and Minimum Values

Definition:

A function f(x,y) has a local maximum at (a,b) if $f(a,b) \ge f(x,y)$ when (x,y)is near (a,b).

The number *f*(*a*,*b*) is called a **local maximum value.**

Maximum and Minimum Values

Definition:

A function f(x,y) has a local minimum at (a,b) if $f(a,b) \le f(x,y)$ when (x,y)is near (a,b).

The number *f*(*a*,*b*) is called a **local minimum value.**

The Meaning of "Near"

Fermat's Theorem

If a function f(x,y) has a local minimum or a local maximum at (a,b), then (a,b) is a <u>critical point</u> of f.

Definition:

A point (*a*,*b*) in the domain of a function *f*(*x*,*y*) is called a **critical point** if either

(a)
$$f_x(a,b)=0$$
 and $f_y(a,b)=0$, or

(b) at least one of $f_x(a,b)$ or $f_y(a,b)$ does not exist.

Some interesting cases:

(a)
$$f(x,y) = x^2$$

(b)
$$f(x,y) = \sqrt{x^2 + y^2}$$

(c)
$$f(x,y) = \sin x - \sin y$$

Some interesting cases:

(d)
$$f(x,y) = e^{-x^2 - y^2}$$

Some interesting cases:

(e)
$$f(x,y) = \frac{x^3 - 3x}{1 + y^2}$$

Some interesting cases:

e.

(f)
$$f(x, y) = x^2 - y^2$$

Second Derivatives Test

Suppose the second partial derivatives of f are continuous on a disk with centre (a,b) and suppose that $f_x(a,b)=0$ and $f_y(a,b)=0$.

Second Derivatives Test

Let
$$D = D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^2$$
.

(a) If D > 0 and f_{xx}(a,b) > 0, then f(a,b) is a local min.
(b) If D > 0 and f_{xx}(a,b) < 0, then f(a,b) is a local max.
(c) If D < 0, then f(a,b) is not a local max or min and we say (a,b) is a saddle point of f.

(0,0) is a saddle point -

Note:

If *D*=0, the test gives no information: *f* could have a local max or min at (*a*,*b*) or (*a*,*b*) could be a saddle point of *f*.

Second Derivatives Test

Example:

Find the local minimum and maximum values and saddle points (if any) of $f(x, y) = x^2 + y^2 + 2xy^2$.

When The Second Derivatives Test Does Not Apply

Example:

For the function to the right, it can be shown that (0,0) is the only critical point of fand that D(0,0)=0 and so the second derivatives test is inconclusive.

What is (0,0)?

$$f(x,y) = x^3 - 3xy^2$$

