Limits and Continuity

Section 3

Limit of a Function in R^{2}

Definition:

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that the y-values can be made arbitrarily close (as close as we'd like) to L by taking the x values sufficiently close to
 a, from either side of a, but not equal to a.

Existence of a Limit in R^{2}

The limit exists if and only if the left and right limits both exist (equal a real number) and are the same value.

Existence of a Limit in R^{2}

It is relatively easy to show that this type of limit exists since there are only two ways to approach the number a along the real number line: either from the left or from the right

Limit of a Function in R^{3}

Definition:

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

means that the z-values
approach L as (x, y)
approaches (a, b) along every path in the domain of f.

Existence of a Limit in R^{3}

In general, it is difficult to show that such a limit exists because we have to consider the limit along all possible paths to (a, b).

FIGURE 3.2 Paths leading to (a, b)

Existence of a Limit in R^{3}

However, to show that a limit doesn't exist, all we have to do is to find two different paths leading to (a, b) such that the limit of the function along each path is different (or does not exist).

FIGURE 3.4 The graph of $f(x, y)=\frac{y^{2}-x^{2}}{2 x^{2}+3 y^{2}}$

Existence of a Limit in R^{3}

Example:
Show that the following limits do not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{2}-x^{2}}{2 x^{2}+3 y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{2 x^{4}+y^{4}}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+\sin ^{2} y}{2 x^{2}+y^{2}}$

Limit Laws

Theorem:

Assume that $\lim _{(x, y)(a, b)} f(x, y)$ and $\lim _{(x, y) \rightarrow(a, b)} g(x, y)$ exist (i.e. are real numbers). Then
(a) $\lim _{(x, y) \rightarrow(a, b)}(f(x, y) \pm g(x, y))=\lim _{(x, y) \rightarrow(a, b)} f(x, y) \pm \lim _{(x, y) \rightarrow(a, b)} g(x, y)$
(b) $\lim _{(x, y) \rightarrow(a, b)}(c f(x, y))=c \lim _{(x, y) \rightarrow(a, b)} f(x, y)$, where c is any constant.

Limit Laws

Theorem (continued):

(c) $\lim _{(x, y) \rightarrow(a, b)}(f(x, y) \times g(x, y))=\lim _{(x, y) \rightarrow(a, b)} f(x, y) \times \lim _{(x, y) \rightarrow(a, b)} g(x, y)$
(d) $\lim _{(x, y) \rightarrow(a, b)} \frac{f(x, y)}{g(x, y)}=\frac{\lim _{(x, y) \rightarrow(a, b)} f(x, y)}{\lim _{(x, y) \rightarrow(a, b)} g(x, y)}$, provided $\lim _{(x, y) \rightarrow(a, b)} g(x, y) \neq 0$.

Some Basic Rules

For the function $f(x, y)=x, \lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(x, y) \rightarrow(a, b)} x=a$

For the function $f(x, y)=y, \quad \lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(x, y) \rightarrow(a, b)} y=b$

For the function $f(x, y)=c, \quad \lim _{(x, y) \rightarrow(a, b)} f(x, y)=\lim _{(x, y) \rightarrow(a, b)} c=c$

Evaluating Limits

Example \#10:
Using the properties of limits, evaluate

$$
\lim _{(y) \rightarrow(2,-2)} \frac{1}{x y-4}
$$

Solution:

$$
\begin{aligned}
& \lim _{(x, y)(2,-2)} \frac{1}{x y-4} \\
& =\frac{\lim _{(x, y)(2,-2)} 1}{\left.\lim _{(x, y) \rightarrow(2,-2)} x y-4\right)}
\end{aligned}
$$

$$
=\frac{\lim _{(x, y) \rightarrow(2,-2)} x \cdot \lim _{(x, y) \rightarrow(2,-2)} 1}{\lim _{(x, y)} y-\lim _{(x, y) \rightarrow(2,-2)} 4}
$$

$$
=\frac{1}{2 \cdot(-2)-4}
$$

$$
=-\frac{1}{8}
$$

Direct Substitution

Theorem:

If $f(x, y)$ is a polynomial or rational function (in which case (a, b) must be in the domain of f), then

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

Continuity of a Function in R^{3}

Intuitive idea:
A function is continuous if its graph has no holes, gaps, jumps, or tears.

A continuous function has the property that a small change in the input produces a small change in
 the output.

Continuity of a Function in R^{3}

Definition:

A function f is continuous at the point (a, b) if
$\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$

Continuity of a Function in R^{3}

Example:

Determine whether or not the function
$f(x, y)= \begin{cases}x^{2}+y^{2}+4 & \text { if }(x, y) \neq(0,0) \\ 1 & \text { if }(x, y)=(0,0)\end{cases}$
is continuous at $(0,0)$.

Which Functions Are Continuous?

A function is continuous if it is continuous at every point in its domain.

Basic Continuous Functions:
\checkmark polynomials
\checkmark logarithmic functions
\checkmark rational functions
\checkmark exponential functions
\checkmark root functions

Which Functions Are Continuous?

Combining Continuous Functions:
The sum, difference, product, quotient, and composition of continuous functions is continuous where defined.

Example:
Find the largest domain on which $f(x, y)=e^{x^{2} y}+\sqrt{x+y^{2}}$ is continuous.

Limits of Continuous Functions

By the definition of continuity, if a function is continuous at a point, then we can evaluate the limit simply by direct substitution.

Example: Evaluate $\lim _{(x, y) \rightarrow(0,-1)}\left(e^{x^{2} y}+\sqrt{x+y^{2}}\right)$

