Partial Derivatives

Section 4

Derivative of $y=f(x)$

Recall:

Definition of the Derivative in Single Variable
Calculus:

$$
\frac{d f}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

instantaneous rate of change of f with respect to x

Partial Derivatives of $z=f(x, y)$

The partial derivative of a function of several variables is a way to measure the rate of change of the function as one of its variables changes.

Partial Derivatives of $z=f(x, y)$

Example: Dynamics of Prey Consumption
Consider the type-2 functional response model

$$
c\left(N, T_{h}\right)=\frac{a N}{1+a T_{h} N}
$$

where $c\left(N, T_{h}\right)$ is the number of prey captured (in some fixed time interval), T_{h} is the handling time, and N is the density of prey.

How does the number of rabbits captured depend on the handling time and the density?

Partial Derivatives of $z=f(x, y)$

The partial derivative of f with respect to x is the real-valued function $\partial f / \partial x$ defined by

$$
\frac{\partial f}{\partial x}(x, y)=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

provided that the limit exists.

This function tells us the rate of change of f in the x-direction at all points (x, y) for which the limit exists.

Partial Derivatives of $z=f(x, y)$

The partial derivative of f with respect to y is the real-valued function $\partial f / \partial y$ defined by

$$
\frac{\partial f}{\partial y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

provided that the limit exists.
This function tells us the rate of change of f in the y-direction at all points (x, y) for which the limit exists.

Partial Derivatives of $z=f(x, y)$

Example:

Using the definitions, compute $\partial f / \partial x$ and $\partial f / \partial y$ for $f(x)=x^{2}-y$.

Partial Derivatives of $z=f(x, y)$

Rule for finding partial derivatives of $z=f(x, y)$:

1. To find f_{x}, treat y as a constant and differentiate $f(x, y)$ with respect to x.
2. To find f_{y}, treat x as a constant and differentiate $f(x, y)$ with respect to y.

Partial Derivatives of $z=f(x, y)$

Example:

Find the first partial derivatives of the following functions.
$\begin{array}{ll}\text { (a) } f(x, y)=x^{4} y^{3}+8 x^{2} y & \text { (b) } z=x^{y}\end{array}$
(c) $z=\arctan \left(\frac{y}{x}\right)$

Geometric Interpretation of the Partial Derivatives of $z=f(x, y)$

Let $z=f(x, y)$ be a function of
 two variables whose graph is the surface S.

Fix $y=b$ (constant) and let x vary.

The curve c_{1} on the surface S is defined by $z=f(x, b)$.
(Note: this is now only a function of the variable x)

Geometric Interpretation of the Partial Derivatives of $z=f(x, y)$

The partial derivative of f
 with respect to x at (a, b) is the slope of the tangent T_{1} to the curve c_{1} at the point P.

Geometric Interpretation of the Partial Derivatives of $z=f(x, y)$

Now, fix $x=a$ (constant) and let y vary.

The curve c_{2} on the surface S is defined by $z=f(a, y)$. (Note: this is now only a function of the variable y)

Geometric Interpretation of the Partial Derivatives of $z=f(x, y)$

The partial derivative of f with respect to y at (a, b) is the slope of the tangent T_{2} to the curve c_{2} at the point P.

Geometric Interpretation of the Partial Derivatives of $z=f(x, y)$

Example:

Determine the signs of $f_{x}(1,2)$ and $f_{y}(1,2)$ on the graph below.

Partial Derivatives of $z=f(x, y)$

Example:
If $f(x, y)=\sqrt{4-x^{2}-y^{2}}$, find $f_{x}(1,0)$ and $f_{y}(1,0)$ and interpret geometrically.

Partial Derivatives of $z=f(x, y)$

Example: Wind Chill

The table below contains values of the wind chill index, or simply wind chill, $W(T, v)$ based on measurements of air temperature T (in degrees Celsius) and wind speed v (in kilometres per hour).

	$\mathrm{T}=-25$	$\mathrm{~T}=-20$	$\mathrm{~T}=-15$	$\mathrm{~T}=-10$
$\mathrm{v}=40$	-40.8	-34.1	-27.4	-20.8
$\mathrm{v}=30$	-39.1	-32.6	-26.0	-19.5
$\mathrm{v}=20$	-36.8	-30.5	-24.2	-17.9

Estimate $W_{T}(-20,30)$ and interpret the result.

