Partial Derivatives

Section 4

Derivative of y=f(x)

Recall: <u>Definition of the Derivative in Single Variable</u> <u>Calculus</u>:

$$\frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
instantaneous rate of change of f with respect to x

The **partial derivative** of a function of several variables is a way to measure the rate of change of the function as <u>one</u> of its variables changes.

Example: <u>Dynamics of Prey Consumption</u> Consider the *type-2 functional response* model

$$c(N,T_h) = \frac{aN}{1 + aT_hN}$$

where $c(N,T_h)$ is the number of prey captured (in some fixed time interval), T_h is the handling time, and N is the density of prey.

How does the number of rabbits captured depend on the handling time and the density?

The **partial derivative of** *f* **with respect to** *x* is the real-valued function $\partial f / \partial x$ defined by

$$\frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$

provided that the limit exists.

This function tells us the rate of change of *f* in the *x*-direction at all points (*x*,*y*) for which the limit exists.

The **partial derivative of** *f* **with respect to** *y* is the real-valued function $\partial f / \partial y$ defined by

$$\frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

provided that the limit exists.

This function tells us the rate of change of *f* in the *y*-direction at all points (*x*,*y*) for which the limit exists.

Example:

Using the definitions, compute $\partial f / \partial x$ and $\partial f / \partial y$ for $f(x) = x^2 - y$.

Rule for finding partial derivatives of *z*=*f*(*x*,*y*):

1. To find f_x , treat y as a constant and differentiate f(x,y) with respect to x.

2. To find f_y , treat x as a constant and differentiate f(x,y) with respect to y.

Example:

Find the first partial derivatives of the following functions.

(a)
$$f(x,y) = x^4 y^3 + 8x^2 y$$
 (b) $z = x^y$

(c)
$$z = \arctan\left(\frac{y}{x}\right)$$

Let z=f(x,y) be a function of two variables whose graph is the surface S.

Fix y=b (constant) and let x vary.

The curve c_1 on the surface S is defined by z=f(x,b). (Note: this is now only a function of the variable x)

The partial derivative of fwith respect to x at (a,b) is the slope of the tangent T_1 to the curve c_1 at the point P.

Now, fix x=a (constant) and let y vary.

The curve c_2 on the surface S is defined by z=f(a,y). (Note: this is now only a function of the variable y)

The partial derivative of fwith respect to y at (a,b) is the slope of the tangent T_2 to the curve c_2 at the point P.

Example:

Determine the signs of $f_x(1,2)$ and $f_y(1,2)$ on the graph below.

Example:

If $f(x,y) = \sqrt{4 - x^2 - y^2}$, find $f_x(1,0)$ and $f_y(1,0)$ and interpret geometrically.

Example: <u>Wind Chill</u>

The table below contains values of the wind chill index, or simply wind chill, W(T,v) based on measurements of air temperature T (in degrees Celsius) and wind speed v (in kilometres per hour).

	T=-25	T=-20	T=-15	T=-10
v=40	-40.8	-34.1	-27.4	-20.8
v=30	-39.1	-32.6	-26.0	-19.5
v=20	-36.8	-30.5	-24.2	-17.9

Estimate $W_{T}(-20, 30)$ and interpret the result.