Tangent Plane, Linearization, and Differentiability

Section 5

Tangent Lines

Let y=f(x) be a <u>differentiable</u> function in R².

Equation of the tangent line to the graph of f at (a, f(a)):

y - f(a) = f'(a)(x - a)

Linearization of *f* at *x*=*a*:

$$L_a(x) = f(a) + f'(a)(x - a)$$

L because this is a Linear function

Tangent Lines

The function f is approximately equal to its linearization at (a, f(a))when the value of x is close to a.

Linear approximation of *f* at *x*=*a*:

$$f(x) \approx f(a) + f'(a)(x - a)$$

Tangent Planes

Let z=f(x,y) be a function in R³ with continuous partial derivatives f_x and f_y .

Definition: Tangent Plane

The plane that contains the point P and the tangent lines T_1 and T_2 at P is called the tangent plane to the surface z=f(x,y) at P.

Tangent Planes

Equation of the tangent plane to the surface z=f(x,y) at (a, b, f(a,b)):

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

as you zoom in around (*a*,*b*, *f*(*a*,*b*)), the tangent plane more and more closely resembles the surface *f*

Tangent Planes

Example:

Find an equation of the tangent plane to the surface $f(x, y) = \ln(x - 3y)$ at the point (7, 2).

Linearization and Linear Approximation

Definition:

Assume that z=f(x,y) has continuous partial derivatives at (a,b).

Linearization of f at (a,b):

$$L_{(a,b)}(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Linear approximation (or tangent plane approximation) of *f* at (*a*,*b*):

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

Linearization and Linear Approximation

Example:

Find the linearization of $f(x,y) = \ln(x-3y)$ at (7,2) and use it to approximate f(6.9, 2.06).

- A function f(x) is differentiable at a point x=a if f(a) exists,
- i.e. if the limit

$$\left. f'(a) = \frac{df}{dx} \right|_{x=a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

equals a real number.

- Geometrically, a function is differentiable at x=a if its tangent line is well-defined at (a,f(a)).
- A well-defined tangent line has the property that it closely resembles the graph of the function on <u>both sides</u> of x=a as we move closer and closer to the point (i.e., as we zoom in around the point, the curve and its tangent line become indistinguishable).

* *f*(*x*) is differentiable at *x*=1

* *f*(*x*) is NOT differentiable at *x*=0

 Theoretically, a function f(x,y) is differentiable at (x,y)=(a,b) if the <u>directional</u> derivative of f exists in <u>EVERY</u> direction at (a,b). (This is impossible to check directly using the algebraic definition of the derivative.)

- Geometrically, a function f(x,y) is differentiable at a point (x,y)=(a,b) if its tangent plane is well-defined at (a,b).
- A well-defined tangent plane has the property that it closely resembles the graph of the function <u>all around</u> the point (*a*,*b*) as we move closer and closer to the point (i.e., as we zoom in around the point, the surface and its tangent plane become indistinguishable).

Differentiable at (0,0)

NOT differentiable at (0,0)

When a function f(x,y) is differentiable at a point (a,b), we say that its linearization $L_{(a,b)}(x,y)$ is a good approximation to f near (a,b) and so the linear approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is valid for (*x*,*y*) near (*a*,*b*).

Theorems

Sufficient Condition for Differentiability

Assume that f is defined on an open disk $B_r(a,b)$ centred at (a,b), and that the partial derivatives f_x and f_y are continuous on $B_r(a,b)$. Then f is differentiable at (a,b).

Differentiability Implies Continuity

Assume that a function *f* is differentiable at (*a*,*b*). Then it is continuous at (*a*,*b*).

Example:

Verify that the linear approximation

 $\frac{2x+3}{4y+1} \approx 3 + 2x - 12y$ is valid for (*x*,*y*) near (0,0).

Example #16.

Show that the function $f(x,y) = x \tan y$ is differentiable at (0,0). What is the largest open disk centred at (0,0) on which f is differentiable?

Example in your text:

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Using the formula, and ignoring the fact that the partial derivatives are <u>**not</u>** continuous at (0,0), we find the linearization (tangent plane approximation) to be</u>

$$L_{(0,0)}(x,y) = 0$$

Example in your text:

However this is <u>not</u> a good approximation since the error between this linearization and the function does not approach 0 as (x,y) approaches (0,0).

For instance, along y=x, $f(x,x)=\frac{1}{2}$ and the difference between the tangent plane and and the surface will remain constant at $\frac{1}{2}$ (i.e. will not go to zero):

error =
$$|f(x,y) - L_{(0,0)}(x,y)| = \left|\frac{1}{2} - 0\right| = \frac{1}{2}$$