
Tangent	Plane,	Linearization,	and	
Differentiability	

Section	5	



Tangent	Lines	

Let	y=f(x)	be	a	differentiable	
function	in	R2.	
	
Equation	of	the	tangent	line	
to	the	graph	of	f	at	(a,f(a)):	
	
	
	
Linearization	of	f	at	x=a:	
	
.	
	
	
	

			

€ 

y − f (a) = f '(a)(x − a)

€ 

La (x) = f (a) + f '(a)(x − a)

y

x

y = f(x)

a

f(a)

T

L	because	this	is	a	Linear	function	



Tangent	Lines	

The	function	f	is	
approximately	equal	to	its	
linearization	at	(a,	f(a))	
when	the	value	of	x	is	
close	to	a.	
	
	
Linear	approximation	of	f	
at	x=a:	
	
	
	
	
	
	
	
	

				

€ 

f (x) ≈ f (a) + f '(a)(x − a)

y

x

y = f(x)

a

f(a)

T

as	you	zoom	in	around	
(a,	f(a)),	the	line	T	more		
and	more	closely	resembles		
the	curve	f	



Tangent	Planes	

Let	z=f(x,y)	be	a	function	in	
R3	with	continuous	partial	
derivatives	fx	and	fy.	
	
Definition:	Tangent	Plane	
	
The	plane	that	contains	the	
point	P	and	the	tangent	
lines	T1	and	T2	at	P	is	called	
the	tangent	plane	to	the	
surface	z=f(x,y)	at	P.	
	
	
	
	
	
	

			

T1	

T2	



Tangent	Planes	

Equation	of	the	tangent	
plane	to	the	surface	
z=f(x,y)	at	(a,	b,	f(a,b)):	
	
	
	
	
	
	

			 T1	

T2	

as	you	zoom	in	around	
(a,b,	f(a,b)),	the	tangent		
plane	more	and	more	closely		
resembles	the	surface	f	

z = f (a,b)+ fx (a,b)(x − a) + fy (a,b)(y− b)



Tangent	Planes	

Example:		
Find	an	equation	of	the	tangent	plane	to	the	
surface																																				at	the	point	(7,	2).		
	
	
	
	
	
	

f (x, y) = ln(x −3y)



Linearization	and	Linear	
Approximation	

Definition:	
Assume	that	z=f(x,y)	has	continuous	partial	
derivatives	at	(a,b).		
	
Linearization	of	f	at	(a,b):	
	
	
	
Linear	approximation	(or	tangent	plane	
approximation)	of	f	at	(a,b):	
	
	
	
	

L(a,b) (x, y) = f (a,b)+ fx (a,b)(x − a) + fy (a,b)(y− b)

€ 

f (x,y) ≈ f (a,b) + fx (a,b)(x − a) + fy (a,b)(y − b)



Linearization	and	Linear	
Approximation	

Example:	
Find	the	linearization	of	
at								and	use	it	to	approximate		
	

€ 

f (x,y) = ln(x − 3y)

€ 

(7,2)

€ 

f (6.9, 2.06).



Differentiability	in	R2	

•  A	function	f(x)	is	differentiable	at	a	point	x=a	if	
f’(a)	exists,	

	i.e.	if	the	limit	

equals	a	real	number.	
	€ 

f '(a) =
df
dx x= a

= lim
h→0

f (a + h) − f (a)
h



Differentiability	in	R2	

•  Geometrically,	a	function	is	differentiable	at	
x=a	if	its	tangent	line	is	well-defined	at	(a,f(a)).		

•  A	well-defined	tangent	line	has	the	property	
that	it	closely	resembles	the	graph	of	the	
function	on	both	sides	of	x=a	as	we	move	
closer	and	closer	to	the	point	(i.e.,	as	we	zoom	
in	around	the	point,	the	curve	and	its	tangent	
line	become	indistinguishable).		



Differentiability	in	R2	
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€ 

f (x) = 2x T	

€ 

f (x) = 2x T	

*	f(x)	is	differentiable	at	x=1	



Differentiability	in	R2	

		

€ 

f (x) = x
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f (x) = x

*	f(x)	is	NOT	differentiable	at	x=0	



Differentiability	in	R3	
	
•  Theoretically,	a	function	f(x,y)	is	differentiable	
at	(x,y)=(a,b)	if	the	directional	derivative	of	f	
exists	in	EVERY	direction	at	(a,b).	(This	is	
impossible	to	check	directly	using	the	
algebraic	definition	of	the	derivative.)	



Differentiability	in	R3	

•  Geometrically,	a	function	f(x,y)	is	
differentiable	at	a	point	(x,y)=(a,b)	if	its	
tangent	plane	is	well-defined	at	(a,b).		

•  A	well-defined	tangent	plane	has	the	property	
that	it	closely	resembles	the	graph	of	the	
function	all	around	the	point	(a,b)	as	we	move	
closer	and	closer	to	the	point	(i.e.,	as	we	zoom	
in	around	the	point,	the	surface	and	its	
tangent	plane	become	indistinguishable).		

	



Differentiability	in	R3	
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f (x) = x 2 + y 2
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f (x) = x 2 + y 2

Differentiable	at	(0,0)	 NOT	differentiable	at	(0,0)	



Differentiability	for	a		
Function	of	Two	Variables	

When	a	function	f(x,y)	is	differentiable	at	a	point	
(a,b),	we	say	that	its	linearization	L(a,b)(x,y)	is	a	
good	approximation	to	f	near	(a,b)	and	so	the	
linear	approximation	
	
	
is	valid	for	(x,y)	near	(a,b).		
	
	
	

f (x, y) ≈ f (a,b)+ fx (a,b)(x − a) + fy (a,b)(y− b)



Theorems	

Sufficient	Condition	for	Differentiability	
Assume	that	f	is	defined	on	an	open	disk	Br(a,b)	
centred	at	(a,b),	and	that	the	partial	derivatives		
fx	and	fy	are	continuous	on	Br(a,b).	Then	f	is	
differentiable	at	(a,b).	
	
Differentiability	Implies	Continuity	
Assume	that	a	function	f	is	differentiable	at	
(a,b).	Then	it	is	continuous	at	(a,b).	

(a,b)

r



Differentiability	for	a		
Function	of	Two	Variables	

Example:	
Verify	that	the	linear	approximation	
	
	
is	valid	for	(x,y)	near	(0,0).	

€ 

2x + 3
4y +1

≈ 3+ 2x −12y



Differentiability	for	a		
Function	of	Two	Variables	

Example	#16.	
Show	that	the	function		
is	differentiable	at	(0,0).	What	is	the	largest	
open	disk	centred	at	(0,0)	on	which	f	is	
differentiable?		€ 

f (x,y) = x tan y



Differentiability	for	a		
Function	of	Two	Variables	

	
Example	in	your	text:	
	
	
	
	
	
	
Using	the	formula,	and	ignoring	the	fact	that	the	
partial	derivatives	are	not	continuous	at	(0,0),		we	
find	the	linearization	(tangent	plane	approximation)	
to	be	
	
	
	
	
	

€ 

f (x,y) =

xy
x 2 + y 2

if (x,y) ≠ (0,0)

0 if (x,y) = (0,0)

# 

$ 
% 

& % 

€ 

L(0,0)(x,y) = 0



Differentiability	for	a		
Function	of	Two	Variables	

Example	in	your	text:	
However	this	is	not	a	good	approximation	since	the	
error	between	this	linearization	and	the	function	
does	not	approach	0	as	(x,y)	approaches	(0,0).	
	
For	instance,	along	y=x,	f(x,x)=	½	and	the	difference	
between	the	tangent	plane	and	and	the	surface	will	
remain	constant	at	½	(i.e.	will	not	go	to	zero):	
	
	
	
	
€ 

error = f (x,y) − L(0,0)(x,y) =
1
2
− 0 =

1
2


