Tangent Plane, Linearization, and Differentiability

Section 5

Tangent Lines

Let $y=f(x)$ be a differentiable function in R^{2}.

Equation of the tangent line to the graph of f at $(a, f(a))$:

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

Linearization of \boldsymbol{f} at $\boldsymbol{x}=\boldsymbol{a}$:

$$
L_{a}(x)=f(a)+f^{\prime}(a)(x-a)
$$

L because this is a Linear function

Tangent Lines

The function f is approximately equal to its linearization at ($a, f(a)$) when the value of x is close to a.

Linear approximation of f

 at $x=a$:$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

as you zoom in around
($a, f(a)$), the line T more
and more closely resembles
the curve f

section 5

Tangent Planes

Let $z=f(x, y)$ be a function in R^{3} with continuous partial derivatives f_{x} and f_{y}.

Definition: Tangent Plane

The plane that contains the point P and the tangent lines T_{1} and T_{2} at P is called
 the tangent plane to the surface $z=f(x, y)$ at P.

Tangent Planes

$$
\begin{aligned}
& \text { Equation of the tangent } \\
& \text { plane to the surface } \\
& z=f(x, y) \text { at }(a, b, f(a, b)) \text { : } \\
& z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
\end{aligned}
$$

as you zoom in around $(a, b, f(a, b))$, the tangent plane more and more closely resembles the surface f

Tangent Planes

Example:

Find an equation of the tangent plane to the surface $f(x, y)=\ln (x-3 y)$ at the point $(7,2)$.

Linearization and Linear

Approximation

Definition:
Assume that $z=f(x, y)$ has continuous partial derivatives at (a, b).

Linearization of f at (a, b) :

$$
L_{(a, b)}(x, y)=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linear approximation (or tangent plane approximation) of f at (a, b) :

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Linearization and Linear Approximation

Example:

Find the linearization of $f(x, y)=\ln (x-3 y)$ at $(7,2)$ and use it to approximate $f(6.9,2.06)$.

Differentiability in R^{2}

- A function $f(x)$ is differentiable at a point $x=a$ if $f(a)$ exists,
i.e. if the limit

$$
f^{\prime}(a)=\left.\frac{d f}{d x}\right|_{x=a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

equals a real number.

Differentiability in R^{2}

- Geometrically, a function is differentiable at $x=a$ if its tangent line is well-defined at ($a, f(a)$).
- A well-defined tangent line has the property that it closely resembles the graph of the function on both sides of $x=a$ as we move closer and closer to the point (i.e., as we zoom in around the point, the curve and its tangent line become indistinguishable).

Differentiability in R^{2}

* $f(x)$ is differentiable at $x=1$

Differentiability in R^{2}

* $f(x)$ is NOT differentiable at $x=0$

Differentiability in R^{3}

- Theoretically, a function $f(x, y)$ is differentiable at $(x, y)=(a, b)$ if the directional derivative of f exists in EVERY direction at (a, b). (This is impossible to check directly using the algebraic definition of the derivative.)

Differentiability in R^{3}

- Geometrically, a function $f(x, y)$ is differentiable at a point $(x, y)=(a, b)$ if its tangent plane is well-defined at (a, b).
- A well-defined tangent plane has the property that it closely resembles the graph of the function all around the point (a, b) as we move closer and closer to the point (i.e., as we zoom in around the point, the surface and its tangent plane become indistinguishable).

Differentiability in R^{3}

Differentiable at $(0,0)$

$$
f(x)=\sqrt{x^{2}+y^{2}}
$$

NOT differentiable at $(0,0)$

Differentiability for a Function of Two Variables

When a function $f(x, y)$ is differentiable at a point (a, b), we say that its linearization $L_{(a, b)}(x, y)$ is a good approximation to f near (a, b) and so the linear approximation

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

is valid for (x, y) near (a, b).

Theorems

Sufficient Condition for Differentiability
Assume that f is defined on an open disk $\mathrm{B}_{r}(a, b)$ centred at (a, b), and that the partial derivatives
f_{x} and f_{y} are continuous on $\mathrm{B}_{r}(a, b)$. Then f is differentiable at (a, b).

Differentiability Implies Continuity
Assume that a function f is differentiable at (a, b). Then it is continuous at (a, b).

Differentiability for a Function of Two Variables

Example:
Verify that the linear approximation

$$
\frac{2 x+3}{4 y+1} \approx 3+2 x-12 y
$$

is valid for (x, y) near $(0,0)$.

Differentiability for a Function of Two Variables

Example \#16.
Show that the function $f(x, y)=x \tan y$ is differentiable at $(0,0)$. What is the largest open disk centred at $(0,0)$ on which f is differentiable?

Differentiability for a Function of Two Variables

Example in your text:

$$
f(x, y)=\left\{\begin{array}{lll}
\frac{x y}{x^{2}+y^{2}} & \text { if } & (x, y) \neq(0,0) \\
0 & \text { if } & (x, y)=(0,0)
\end{array}\right.
$$

Using the formula, and ignoring the fact that the partial derivatives are not continuous at (0,0), we find the linearization (tangent plane approximation) to be

$$
L_{(0,0)}(x, y)=0
$$

Differentiability for a Function of Two Variables

Example in your text:

However this is not a good approximation since the error between this linearization and the function does not approach 0 as (x, y) approaches (0,0).

For instance, along $y=x, f(x, x)=1 / 2$ and the difference between the tangent plane and and the surface will remain constant at $1 / 2$ (i.e. will not go to zero):

$$
\text { error }=\left|f(x, y)-L_{(0,0)}(x, y)\right|=\left|\frac{1}{2}-0\right|=\frac{1}{2}
$$

