Section 7

Let *f* be a differentiable function of two variables, *x* and *y*. Then *f* has two partial derivatives:

$$\frac{\partial f}{\partial x} \qquad \qquad \frac{\partial f}{\partial y}$$

Differentiating these expressions again (i.e. finding partial derivatives of partial derivatives), we obtain four second-order partial derivatives.

Differentiating $\frac{\partial f}{\partial x}$ with respect to x, we obtain:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} \quad \text{or} \quad (f_x)_x = f_{xx}$$

Differentiating $\frac{\partial f}{\partial v}$ with respect to y, we obtain:

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} \quad \text{or} \quad (f_y)_y = f_{yy}$$

section 7

Differentiating $\frac{\partial f}{\partial x}$ with respect to y, we obtain:

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} \quad \text{or} \quad (f_x)_y = f_{xy}$$

Differentiating $\frac{\partial f}{\partial v}$ with respect to x, we obtain:

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} \quad \text{or} \quad (f_y)_x = f_{yx}$$

section 7

Example:

Compute all second-order derivatives for the function $f(x,y) = \ln(2x+3y)$.

Equality of Mixed Partial Derivatives

Theorem:

Assume that a function f is defined in an open disk $B_r(a,b)$ and that the partial derivatives f_{xy} and f_{yx} are continuous on $B_r(a,b)$. Then $f_{xy}(a,b)=f_{yx}(a,b)$.

Some ways in which these derivatives are useful:

- 1. Second-order derivatives can help us to determine the behaviour of first-order derivatives and the concavity of the graph of f(x,y)
- 2. We can use second-order partial derivatives build partial differential equations which are used to model many real-life phenomena
- 3. The 'Second Derivatives Test' helps classify critical points of a function f(x,y) as local maxima, local minima, or saddle points

Example:

Using the table of values below, determine whether the following partial derivatives are positive, negative, or zero:

$$f_x(4,1), f_{xx}(4,1), f_y(4,1), f_{yy}(4,1)$$

	x=3	x=4	x=5	x=6
y=0	5.9	6.1	6.8	6.7
y=1	5.6	6	6.2	6.3
y=2	5.4	5.7	6.1	6.5

section 7