Second-Order Partial Derivatives

Section 7

Second-Order Partial Derivatives

Let f be a differentiable function of two variables, x and y.
Then f has two partial derivatives:

$$
\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}
$$

Differentiating these expressions again (i.e. finding partial derivatives of partial derivatives), we obtain four second-order partial derivatives.

Second-Order Partial Derivatives

Differentiating $\frac{\partial f}{\partial x}$ with respect to x, we obtain:

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}} \quad \text { or } \quad\left(f_{x}\right)_{x}=f_{x x}
$$

Differentiating $\frac{\partial f}{\partial y}$ with respect to y, we obtain:

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}} \quad \text { or } \quad\left(f_{y}\right)_{y}=f_{y y}
$$

Second-Order Partial Derivatives

Differentiating $\frac{\partial f}{\partial x}$ with respect to y, we obtain:

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x} \quad \text { or } \quad\left(f_{x}\right)_{y}=f_{x y}
$$

Differentiating $\frac{\partial f}{\partial y}$ with respect to x , we obtain:

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y} \quad \text { or } \quad\left(f_{y}\right)_{x}=f_{y x}
$$

Second-Order Partial Derivatives

Example:

Compute all second-order derivatives for the function $f(x, y)=\ln (2 x+3 y)$.

Equality of Mixed Partial Derivatives

Theorem:
Assume that a function f is defined in an open disk $B_{r}(a, b)$ and that the partial derivatives $f_{x y}$ and f_{yx} are continuous on $\mathrm{B}_{\mathrm{r}}(a, b)$.
Then $f_{\mathrm{xy}}(a, b)=f_{\mathrm{yx}}(a, b)$.

Second-Order Partial Derivatives

Some ways in which these derivatives are useful:

1. Second-order derivatives can help us to determine the behaviour of first-order derivatives and the concavity of the graph of $f(x, y)$
2. We can use second-order partial derivatives build partial differential equations which are used to model many real-life phenomena
3. The 'Second Derivatives Test' helps classify critical points of a function $f(x, y)$ as local maxima, local minima, or saddle points

Second-Order Partial Derivatives

Example:

Using the table of values below, determine whether the following partial derivatives are positive, negative, or zero:

$$
f_{x}(4,1), \quad f_{x x}(4,1), \quad f_{y}(4,1), \quad f_{y y}(4,1)
$$

	$x=3$	$x=4$	$x=5$	$x=6$
$y=0$	5.9	6.1	6.8	6.7
$y=1$	5.6	6	6.2	6.3
$y=2$	5.4	5.7	6.1	6.5

