Topic Overview and Study Checklist

- Modeling with Autonomous DEs
 - ✓ basic models
 - ✓ exponential
 - ✓ logistic
 - \checkmark modified logistic
 - ✓ selection
 - ✓ disease model

- Analysis of Autonomous DEs
 - ✓ equilibria
 - ✓ stability
 - ✓ phase-line diagrams

• Solutions of Differential Equations

 \checkmark sketch solutions to IVPs

- ✓ use Euler's Method to generate approximate numerical values of the solution
- ✓ find algebraic solutions of separable DEs

• Systems of Differential Equations

✓Example: Predator-prey models

✓ Other examples:

- Analysis of Systems of Autonomous DEs
 - ✓ phase-plane diagrams
 - ✓ nullclines
 - ✓ equilibria
 - ✓ phase-plane trajectories

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Basics:
 - ✓ domain
 - ✓range
 - ✓ graphs
 - ✓ contour maps

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Limits and Continuity
 - \checkmark define the limit of a function in R^3
 - \checkmark show that a limit does not exist
 - ✓ compute a limit when it does exist
 - ✓ use limits and the definition of continuity to determine if a function f(x,y) is continuous or not at a point (a,b)

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Partial Derivatives
 - ✓ definitions
 - ✓ computations
 - ✓ estimations
 - ✓ interpretations (in applications or geometrically)

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Directional Derivatives
 - ✓ definition
 - ✓ theorem
 - ✓ computations
 - ✓ interpretations (in applications or geometrically)

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Gradient Vectors
 - ✓ definition
 - ✓ computations
 - ✓ properties
 - ✓ interpretations (in applications or geometrically)

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Tangent Planes

✓ formula

 \checkmark how it is constructed geometrically

✓ Linearizations

✓ formula

✓ when a linearization is a good approximation

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Differentiability
 - ✓ in words, what does it mean for a function f(x,y) to be differentiable at a point (a,b)?
 - ✓ Theorem
 - ✓ Second-Order Partial Derivatives
 - ✓ compute
 - ✓interpret

- Calculus on Functions of Two Variables: z = f(x,y)
 - ✓ Local Extreme Values
 - \checkmark find critical points by solving a system of equations
 - \checkmark use the Second Derivatives Test to classify points
 - ✓ know how to use alternative arguments to classify points if Second Derivatives Test does not apply

- Stochastic Models
 - ✓ definition
 - ✓ basic examples: flipping a coin, rolling a die
 - \checkmark population model with immigration
 - ✓ other definitions: statistic, random experiment

- Basics of Probability Theory
 - ✓ definitions
 - ✓ sample space
 - ✓ event + simple event
 - \checkmark intersection
 - ✓union
 - ✓ compliment
 - ✓ mutually exclusive/disjoint sets

- Basics of Probability Theory
 - ✓ probability
 - ✓ definition
 - ✓ assigning probabilities to equally likely simple events

Conditional Probability

✓ definition

- ✓ law of total probability (tree!)
- ✓ Baye's theorem
- ✓ Applications

- Independence
 - ✓ Definition
 - ✓ Applications

- Discrete Random Variables
 - ✓ definition
 - ✓ examples
 - ✓ probability mass function (definition, properties, histograms)
 - ✓ cumulative distribution function (definition, properties, graphs)
 - ✓ calculating probabilities
 - ✓ mean, variance, standard deviation (definitions, properties, calculations)

- Special Discrete Distribution
 - Binomial

✓ know probability mass function, mean and standard deviation

✓ be able to identify when a random variable can be described by this distribution

- Continuous Random Variables
 - ✓ definition
 - ✓ examples
 - ✓ probability density function (definition, properties, graph)
 - ✓ cumulative distribution function (definition, properties, graph)
 - ✓ calculating probabilities
 - ✓ mean, variance, standard deviation (definitions, calculations)

- Special Continuous Distributions
 - Normal (and Standard Normal)

✓ know probability mass function, mean and standard deviation

✓ be able to identify when a random variable can be described by this distribution