Double Integrals over Rectangles

Section 15.1

Volumes and Double Integrals

Consider a function $f(x, y) \geq 0$ defined on a closed rectangle

$$
R=[a, b] \times[c, d]=\left\{(x, y) \in R^{2} \mid a \leq x \leq b, c \leq y \leq d\right\}
$$

Volumes and Double Integrals

Let S be the solid that lies above R and under the graph of f, i.e.,

$$
S=\left\{(x, y, z) \in R^{3} \mid 0 \leq z \leq f(x, y),(x, y) \in R\right\}
$$

What is the volume of the solid S?

Estimating Volume

Divide R into subrectangles in the following way:
Divide $[a, b]$ into m subintervals of width $\Delta x=\frac{b-a}{m}$.
Divide $[c, d]$ into n subintervals of width $\Delta y=\frac{d-c}{n}$.
Note that we have $m n$ subrectangles of the form

$$
R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]
$$

where the area of each subrectangle is $\Delta A=\Delta x \Delta y$.

Estimating Volume

Next, choose a sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ in each subrectangle and compute $f\left(x_{i j}^{*}, y_{i j}^{*}\right)$.

Estimating Volume

We can approximate the volume under the surface $f(x, y)$ and above subrectangle $R_{i j}$ by the rectangular prism with volume $f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A$.

Estimating Volume

Repeating this for all subrectangles, and adding together the results, we estimate the volume of the solid by the double Riemann sum:

$$
V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

Note: This approximation improves as m and n become larger.

The Double Integral

The double integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

if this limit exists.

Note: When this limit exists, the function f is said to be integrable.

The Double Integral

When $f(x, y) \geq 0$, the double integral can be interpreted as the volume of the solid S that lies under the surface $f(x, y)$ and above the rectangle R, i.e.,

$$
V=\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

The Midpoint Rule

$$
\iint_{R} f(x, y) d A \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(\bar{x}_{i}, \bar{y}_{j}\right) \Delta A
$$

where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ and \bar{y}_{j} is the midpoint of $\left[y_{j-1}, y_{j}\right]$.

Exercise

Example, \#4 modified.

Estimate the volume of the solid that lies below the surface $z=1+x^{2}+3 y$ and above the rectangle $R=[1,2] \times[0,3]$
(a) using a Riemann sum with $m=n=2$ and choosing sample points to be upper right corners.
** ** Please work through the next example on your own. Solutions will be posted in the Solutions section of our OneNote Notebook **
(b) Using the Midpoint Rule.

Partial Integration

Consider a function $f(x, y)$ that is integrable on the rectangle $R=[a, b] \times[c, d]$.

Partial integration with respect to x :

$$
\int_{a}^{b} f(x, y) d x
$$

Partial integration with respect to y :

$$
\int_{c}^{d} f(x, y) d y
$$

Iterated Integrals

Suppose that a function $f(x, y)$ is integrable on the rectangle $R=[a, b] \times[c, d]$. Then

$$
\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

and

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) d y\right] d x
$$

Note: Always work from the inside out!

Iterated Integrals

Calculate each iterated integral.
(a) $\int_{0}^{1} \int_{1}^{3}\left(6 x^{2} y-4 x\right) d y d x$
** Please work through the next example on your own. Solutions will be posted in the Solutions section of our OneNote Notebook **
(b) $\int_{0}^{1} \int_{0}^{2} y e^{x-y} d x d y$

Fubini's Theorem

If f is continuous on the rectangle

$$
R=\{(x, y) \mid a \leq x \leq b, c \leq y \leq d\}
$$

then
$\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$

Note: More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Fubini's Theorem

Exercises:

Calculate each double integral. Is one order of integration more straightforward than the other?
(a) \#30. $\iint_{R} \frac{\tan \theta}{\sqrt{1-t^{2}}} d A, \quad R=\left\{(\theta, t) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{3}\right., 0 \leq t \leq \frac{1}{2}\right\}$
** Please work through the next example on your own. Solutions will be posted in the Solutions section of our OneNote Notebook **
(b) \#32. $\iint_{R} \frac{x}{1+x y} d A, R=[0,1] \times[0,1]$

