Double Integrals over Rectangles



Volumes and Double Integrals

Consider a function f(x,y)=0 defined on a
closed rectangle

R=[a,b]x[c,d]={(x,y)ER2‘asxsb,csysd}

z = f(x, )
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Volumes and Double Integrals

Let S be the solid that lies above R and under
the graph of f, i.e,,
S={(x,y,z)ER3‘OsZsf(x,y),(x,y)ER}

What is the volume of the solid S?

section 15.1



Estimating Volume

Divide R into subrectangles in the following way:

b-a
—

d-c

n

Divide [a,b] into m subintervals of width Ax =

Divide [c,d] into n subintervals of width Ay =

Note that we have mn subrectangles of the form

R" =[xi_19xi]x[yj_19yj]

y

where the area of each subrectangle is A4 = AxAy.
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Estimating Volume

Next, choose a sample point (x,,y,) in each
subrectangle and compute f(x;.,).
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Estimating Volume

We can approximate the volume under the
surface f(x,y) and above subrectangle R; by the
rectangular prism with volume f(x,,y,)A4.
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Estimating Volume

Repeating this for all subrectangles, and adding
together the results, we estimate the volume of the
solid by the double Riemann sum:

)’

Note: This approximation improves as m and n
become larger.
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The Double Integral

The double integral of f over the rectangle R is

f I f(x.y)dd= W}ggw}j}jﬂx,, V)4

i=l j=1

if this limit exists.

Note: When this limit exists, the function fis
said to be integrable.
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The Double Integral

When f(x,y) =0, the double integral can be
interpreted as the volume of the solid S that lies
under the surface f(x,y) and above the rectangle
R, i.e.,

V= f [ f(x,y)da= n}gj}f(xl,,y,)

i=1 j=1
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The Midpoint Rule

ff f(x,y)dA ~ Ezf(f 7,)A4

i=1 j=I

where x, is the midpoint of [x_.x,] and 7 is the
midpoint of [y _,» ]
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Exercise

Example, #4 modified.
Estimate the volume of the solid that lies below
the surface z=1+x"+3y and above the

rectangle R =[1,21x[0,3]

(a) using a Riemann sum with m=n=2 and
choosing sample points to be upper right
corners.

** ** Please work through the next example on your own. Solutions will be
posted in the Solutions section of our OneNote Notebook **

(b) Using the Midpoint Rule.
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Partial Integration

Consider a function f(x,y) that is integrable on
the rectangle R=[a,b]x[c,d].

Partial integration with respect to x:
b
[ fx,y)dx

Partial integration with respect to y:

[ fy)dy
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Iterated Integrals

Suppose that a function f(x,y) is integrable on
the rectangle R=[a,b]x[c,d]. Then

[ f renacay= 1] [ e

and

[ rendvae= f1) [ cearfs

Note: Always work from the inside out!
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lterated Integrals

Calculate each iterated integral.

(a) fol f13(6x2y — 4x)dydx

** Please work through the next example on your own. Solutions will be
posted in the Solutions section of our OneNote Notebook **

(b) f 01 f 02 ye  Vdxdy

section 15.1



Fubini’s Theorem

If fis continuous on the rectangle
R={(x,y)‘asxsb,csysd}
then

[[ fayyda= [ [ feyydydc=["["f(x.p)dudy

R

Note: More generally, this is true if we assume that f is bounded
on R, f is discontinuous only on a finite number of smooth curves,
and the iterated integrals exist.
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Fubini’s Theorem

Exercises:

Calculate each double integral. Is one order of

integration more straightforward than the

other?

tan @

dA, R=-+

(a) #30. ff\/ﬁ

** Please work through the next example on your own. Solutions will
be posted in the Solutions section of our OneNote Notebook **

(b) #32. ff
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