MATHEMATICS 1LT3 TEST 1

Evening Class
Dr. E. Clements
Duration of Test: 60 minutes
McMaster University

FIRST NAME (please print): \qquad
FAMILY NAME (please print): \qquad
Student No.: \qquad

THIS TEST HAS 8 PAGES AND 6 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 34 . Marks are indicated next to the problem number in square brackets. You may use the McMaster standard calculator, Casio fx991 MS+, on this test.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL, YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You need to show work to receive full credit, except for Question 1.

Problem	Points	Mark
1	8	
2	8	
3	7	
4	5	
5	3	
6	3	
TOTAL	34	

1. Multiple choice questions: circle ONE answer. No justification is needed.

(a) [2] Suppose the temperature of an object changes according to $d T / d t=0.4(20-T)$, where $T(0)=15$. Which of the following statements is/are true?
(I) $d T / d t$ is a decreasing function of T.
(II) In the phase-line diagram, arrows point right when $T<20$.
(III) $T(t)=15 e^{-0.4 t}$ is the solution of the initial value problem.
(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
(b) [2] Consider the differential equation, $\frac{d y}{d x}=y e^{-\beta y}-\alpha y$, where α and β are parameters. Which of the following statements is/are true?
(I) $\frac{d y}{d x}=y e^{-\beta y}-\alpha y$ is an autonomous differential equation
(II) $y^{*}=-\frac{\ln \alpha}{\beta}$ is an equilibrium
(III) $y^{*}=0$ is a stable equilibrium when $\alpha>1$
(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
(c) [2] The following pair of equations represent the population growth of two different species where one is the predator and the other is the prey.

$$
\frac{d A}{d t}=0.1 A-0.005 A B, \quad \frac{d B}{d t}=-0.05 B+0.0001 A B
$$

Which of the following statements is/are true?
(I) The variable A represents the prey population.
(II) The per capita growth rate of of species B is $0.0001 A$
(III) $(A, B)=(20,50)$ is an equilibrium of this system.
(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
(d) [2] Determine which of the following statements is/are true.
(I) The top half of the unit sphere is described by the equation $z=\sqrt{1-x^{2}-y^{2}}$.
(II) The level curves for $z=\arctan (y / x)$ are linear.
(III) The range of $z=e^{-x^{2}-y^{2}}$ is (0,1$]$.
(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
2. A population of caribou is modelled by $\frac{d P}{d t}=0.7 P\left(1-\frac{P}{480}\right)$.
(a) [2] Find the equilibria of this equation. What does the larger equilibrium represent?
(b) [2] Graph $\frac{d P}{d t}$ as a function of P.
(c) [2] Draw a phase-line diagram for $\frac{d P}{d t}=0.7 P\left(1-\frac{P}{480}\right)$.
(d) [2] Suppose that initially there are 80 caribou. Sketch the solution curve $P(t)$.
3. Consider the differential equation $\frac{d y}{d x}=\frac{2 x y^{2}}{1+x^{2}}$ and initial condition $y(0)=1$.
(a) [2] Using Euler's Method with a step size of 0.5 , estimate the value of $y(1)$.
(b) [3] Using the separation of variables technique, find a formula for $y(x)$ and use it to find the true value of $y(1)$. Round your answer to two decimal places.
4. Consider the modified competition equations

$$
\frac{d a}{d t}=0.1\left(1-\frac{b}{200}\right) a, \frac{d b}{d t}=0.2\left(1-\frac{a}{300}\right) b
$$

(a) [2] Find and graph the nullclines in the phase plane. Please use different colours for each nullcline.

(b) [1] Identify the equilibria.
(c) [2] Add direction arrows to your phase-plane diagram in part (a). Include direction arrows in each region as well as on the nullclines.
(d) [2] Sketch phase-plane trajectories starting from (i) $(a, b)=(150,100)$ and (ii) $(a, b)=$ $(400,300)$.
5. [3] Find and sketch the domain of $f(x, y)=\sqrt{x+y}+\ln (x-y)$.
6. [3] Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{5 y \sin (7 x)}{4 x^{2}+6 y^{2}}$ does not exist.

MATH 1LT3 * Test 1 * 7 July 2022
Name:
Student No.:

ROUGH WORK

