MATHEMATICS 1LT3 TEST 2

Evening Class
E. Clements

Duration of Test: 60 minutes
McMaster University

FIRST NAME (please print): \qquad
FAMILY NAME (please print): \qquad
Student No.: \qquad

THIS TEST HAS 8 PAGES AND 8 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40 . Marks are indicated next to the problem number in square brackets. You may use the McMaster standard calculator, Casio fx991 MS+, on this test.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL, YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You need to show work to receive full credit, except for Question 1.

Problem	Points	Mark
1	6	
2	6	
3	4	
4	4	
5	6	
6	6	
7	4	
8	4	
TOTAL	40	

1. Multiple Choice. Clearly circle the one correct answer.
(a) [3] Determine which of the following is/are true for the function $f(x, y)$ whose contour map is given below.
(I) $f_{y}(2,1)>0$
(II) $f_{y y}(2,1)>0$
(III) $D_{\mathbf{v}} f(2,1) \approx 2$ when $\mathbf{v}=\mathbf{i}+\mathbf{j}$

(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
(b) [3] Consider the random experiment of rolling a fair, six-sided die. Let A be the event of rolling an even number and let B be the event of rolling a number greater than 2 . Which of the following is/are true?
(I) $P(A \cap B)=\frac{1}{3}$
(II) $P(A \cup B)=\frac{5}{6}$
(III) $P\left(A^{C}\right)=\frac{1}{6}$
(A) none
(B) I only
(C) II only
(D) III only
(E) I and II
(F) I and III
(G) II and III
(H) all three
2. State whether each statement is true or false. Explain your reasoning.
(a) [2] The equation of the tangent plane to the graph of $f(x, y)=e^{y} \sin x$ at $(\pi / 2,0)$ is $z=y+1$.
(b) [2] The maximum rate of increase of the function $g(x, y)=\ln (x / y)$ at $(1,1)$ is 0.5 .
(c) [2] Suppose that a quiz has five multiple-choice questions, each with three choices. If a student randomly answers all questions, then the probability that they will answer at least one question correctly is about 0.86831 .
3. Consider the function $f(x, y)=y \sqrt{x}+y^{3}$.
(a) [2] Compute the partial derivatives $f_{x}(x, y)$ and $f_{y}(x, y)$. State the domain of each.
(b) [2] Explain why $f(x, y)=y \sqrt{x}+y^{3}$ is differentiable at $(1,2)$. What is the largest open disk centred at $(1,2)$ that you can use?
4. [4] Compute the directional derivative of the function $g(x, y)=\arctan (3 x+y)$ at the point $(0,1)$ in the direction specified by $\mathbf{v}=4 \mathbf{i}-3 \mathbf{j}$.
5. Consider the function $f(x, y)=x^{3}-2 y^{2}+3 x y+1$.
(a) [3] Find the critical points of $f(x, y)$.
(b) [3] Using the second derivatives test, classify the critical points from part (a).
6. Consider a population of 250 moose. Suppose that within any given year, there is a 60% chance that the population will increase by 12 and a 40% chance that it will stay the same.
(a) [2] Write the sample space for the population of moose after 3 years.
(b) [2] What is the probability that the population will have increased after 3 years?
(c) [2] Suppose that conditions changed and now within any given year, there is a 75% chance that the population will increase by 12 and a 25% it will decrease by 20 . What is more likely to happen to the number of moose over time? A net increase or a decrease? Explain.
7. Consider the random experiment of rolling two, fair six-sided dice.
(a) [2] Find the probability that the sum is 7.
(b) [2] Using conditional probability, find the probability that the sum is 7 given that one die shows a number larger than 3 .
8. The incidence of asthma in young adults is 6.4% for females and 4.5% for males. Consider a group of young adults consisting of 40 females and 55 males.
(a) [2] What is the probability that a randomly chosen young adult from this group has asthma?
(b) [2] What is the probability that a young adult from this group who has asthma is female?

MATH 1LT3 * Test 2 * 25 July 2017
Name:
Student No.:

ROUGH WORK

