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L. Multiple Choice. Clearly circle the one correct answer.

(a) [3] Determine which of the following is/are true for the function f (z,y) whose contour
map is given below.
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(A) none (B) I only (C) IT only (D) IIT only
(E) X and II (F) I and I1I (G) II and TII (H) all three

(b) [3] Consider the random experiment of rolling a fair, six-sided die. Let A be the event
of rolling an even number and let B be the event of rolling a number greater than 2. Which
of the following is/are true?

(I) PLANB) = 3 - (II) P(AUB) = 2 v (III) P(AC) = %

A-5a2.4] B=334,5¢0f ]
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nnﬁ:iqlb] P(ﬂng):-'z-:j
AuvB=>1a354,5¢¢] - pave)= =

©
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A= 71,8,57 - P(A)-3-1
(A) none (B) I only (C) 1I only (D) I1I only
(E))I and II (F) I and III (G) 11 and III (H) all three
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2. State whether each statement is true or false. Explain your reasoning.

(a) [2] The equation of the tangent plane to the graph of f(x,y) = e¥sinz at (n 2.0 is
2=y+ 1.

t(5o )=c°w1r=' ,
forelvan .. £ (Fo)= ewl =0
IY = l{mlx ‘CY(.HO) € WI =1

2 gV o M fangend plans 4o 2= 14 0(x-E)+ [(y-0)=1+Y

e TRUE
(b) [2] The maximum rate of iricrease (f the function g(z,y) = In(z/y) at (1,1) is 0.5.
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(¢) [2] Suppose that a quiz has five multiple-choice questions, each with three choices. If a
student randomly answers all questions, then the probability that they will answer at least

one question correctly is about 0.86831. _ i Ah Ciam CMdL
A:oi'hufwdméaﬂ n':-ta f_)c)::-&
A% mme an e P(QL)z z PRI73
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3. Consider the function f(z,y) = yvz +y°>. A0

(a) [2] Compute the partial derivatives f,(z,y) and f,(z,y). State the domain of each.
d
‘p = ’L .‘:Y = &1 + 3y
A .
X0 /

(b) [2] Explain why f(z,y) = yvz + 3° is differentiable at (1,2). What is the largest open
disk centred at (1, 2) that you can use?
- N

Cp g - * comtimune ®
B3R dM ‘L’X and "Cy au ‘
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i
@f]‘%‘md l.{ aw algebrail JumHoms and fhus Crittinicns on i clomus.

4. [4] Compute the directional derivative of the function g(x,y) = arctan(3z +y) at the

point (0,1) in the direction specified by v = 4i — 3j. _ 3
1A =J3=3? = 5 gy = ﬂ (3) ... jx(o,l) =

& _ g8 Fn '~ H—(3¢(+y) 1
WrelTs \ (o .- SY{OII)- Y
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5. Consider the function f(r,y) = =% — 2y% + 3zy + 1.
(a) [3] Find the critical points of f (z, ).

-[“= 3Iniy 37 = 5(’)("4—1() [—Yr- ~Hy + 3K

=0, 4y=0 s y-—40@
b Pt Tihe

subr & ol O Zx ==y

Sulb- /X_OW@ y=0 = (0,0) L Q M(a[pam/'
W'}(“gwc y*" ﬁ[—?)(b/)xo a citical pont

(b) [3] Using the second derivatives test, classify the critical points from part (a).

‘p«’(:(ﬂﬁ( ‘pgyt_’"’ LXY:%k =3
D= bx(-u) =3 - -24%-9
Dio,0) = =7 = (0,0) xo a sadlolle pW

‘D/"q e ) "jq(—j)-q - C!jfﬂ ﬁﬂao‘ MM.
fy(~37R) =Y (47D
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6. Consider a population of 250 moose. Suppose that within any given year, there is a 60%
chance that the population will increase by 12 and a 40% chance that it will stay the same.

(a) [2] Write the sample space for the populati(i,nsof moose after 3 years.
(P
Y= A
. el 23 »

450 g améqasb m 250

S =$ 250, 262, 274,280 f

(b) [2] What is the probability that the population will have increased after 3 years?

A= P> Po AC=ps S P = 2505

P(R)=1—-P(A)
] == P(fazgo})
=] - (04)
2 0.936

(¢) [2] Suppose that conditions changed and now within any given year, there is a 75%
chance that the population will increase by 12 and a 25% it will decrease by 20. What is
more likely to happen to the number of moose over time? A net increase or a decrease?

Explain.
’ (omaly Ao pap" dynamtucy el a ‘/-ycm peuod
I 3 . M(dMMd'M AN (ALl ‘7 /2
we'd axped a Movase of 20 .

I/VL I W{
Vet womme si 4 yants ¢ 3xI2 = %20 = b

2 The pop uo Litely fo uincicase ovec Sove by
4 meae e YRat M Mcyl)
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7. Consider the random experiment of rolling two, fair six-sided dice

(a) [2] Find the probability that the sum is 7. iSl -

Besum 0r F 7 300L0), (3,5),(34), (4.3),(52), (6,!)]

¢
P(ﬂ)=ﬁ:‘="¢|j

(b) [2] Using conditional probability, find the probability that the sum is 7 given that one
die shows a number larger than 3.

C= o da Lug . ®ANC=h
P(RIC)= P(Qﬂ(_z b L
Pec) 18 { B |
2
v (= af Least me die >3 4\\1
{ Thew PQ = ',i%- amd P(Rlc) = 37~ ':7"

8. The incidence of asthma in young adults is 6.4% for females and 4.5% for males. Consider
a group of young adults consisting of 40 females and 55 males.

(a) [2] What is the probability that a randomly chosen young adult from this group has
asthma?

| / \
g5 h P(A) = 0.0%(—%) + 0.065] %‘%-\)

Y
S% w 0.0523
o5 P
RFC

= \\\H c
(b) [2] What is the probability that a young adult from this group who has asthma is female?

P(EIR) = PRIFP(F)

F})
= O 065‘(
.oqqg’g%.ow(gg)

2 0,51



